Guidelines for spill response planning:

- Spills in the laboratory can be prevented with good laboratory practices
- Know your limits. If you do not have the basic knowledge to confidently make the decisions required or if you have not been trained, request assistance from others
- Be prepared
 - Learn about the hazards of the chemicals in your laboratory – Review safety data sheets
 - Write Standard Operating Procedures (SOPs) to address hazards
 - Have equipment and training necessary to follow the above SOP’s
- Prepare for spills with advance planning using the following spill prevention techniques:

### Potential Cause of Spill	Prevention Technique
Container, such as a flask or beaker, tips over | Secure containers and equipment to minimize the possible of tipping.
Container dropping | Keep containers and experimental equipment as low as possible.
Breaking a container or a piece of experimental apparatus | Protect containers from breakage by keeping other items from falling on them.
A runaway reaction | Plan experimental reactions to anticipate and to provide controls for undesired outcomes such as overheating.
Releases during transfer of materials from one container to another | Pay attention to what you are doing. Provide secondary containment in the event of spills.
Holes and other leaks in transfer equipment such as pipes, hose, or valves | Check for holes or leaks before use.
Placing material in an incompatible container | Check for compatible uses of chemicals, particularly solvents or aggressive solutions. Check the material and construction of containers and equipment with a goal of maintaining structural integrity.
Breakage of thermometers or similar experimental equipment | Select equipment that has reduced potential for breakage, e.g., replace mercury thermometers and electronic temperature devices.
Breakage of container when dropped | Purchase products in Safe-Cote™ or plastic-coated bottles so if they break, glass fragments and liquids are more likely to remain trapped.