

Biochemistry and Molecular Biology Brown Bag Series

Andrew Stacy

PH.D. Student

"TIP60 Regulation of ΔNp63α is Associated with G2/M Progression"

Tuesday, November 13, 2018

11:00 AM

129 Medical Sciences Building

Lab: Madhavi Kadakia

WRIGHT STATE UNIVERSITY

http://www.med.wright.edu/bmb

TIP60 regulation of Δ Np63 α is associated with G2/M progression

Andrew J. Stacy, Jin Zhang, Michael P. Craig, and Madhavi P. Kadakia

Department of Biochemistry and Molecular Biology; ²Boonshoft School of Medicine, 3640 Colonel Glenn Highway, Wright State University Dayton, OH 45435, USA.

The transcription factor $\Delta Np63\alpha$, a p53 family member, is found primarily in the basal stratum of the skin where it functions to promote epithelial morphogenesis, cell proliferation, and cell survival. $\Delta Np63\alpha$ is up-regulated in non-melanoma skin cancers such as squamous cell carcinoma (SCC), implicating it as a proto-oncogene. Using cell culture and *in vitro* techniques, we have identified the acetyltransferase TIP60 as an upstream regulator of $\Delta Np63\alpha$. We observed that overexpression of $\Delta Np63\alpha$ with increasing concentrations of TIP60 resulted in a dose-dependent increase in $\Delta Np63\alpha$ protein levels. Also, co-expression of $\Delta Np63\alpha$ with a TIP60 catalytic deficient mutant diminished this increase, thereby suggesting that TIP60 acetyltransferase activity contributed to increased $\Delta Np63\alpha$ protein levels. Further, knocking down TIP60 reduced endogenous both $\Delta Np63\alpha$ protein and transcript levels. Inhibition of *de novo* protein synthesis led to increased $\Delta Np63\alpha$ protein half-life in the presence of TIP60. Finally, TIP60 decreased the ubiquitination and proteasomal degradation of $\Delta Np63\alpha$. Cumulatively, these results indicate that $\Delta Np63\alpha$ expression is regulated by TIP60 at both the transcriptional and post-translational levels. We further demonstrated that TIP60 and $\Delta Np63\alpha$ can interact with each other in cells as well using recombinant protein, and colocalize within the nucleus of an SCC cell line. We confirmed acetylation of $\Delta Np63\alpha$ by TIP60 using an in vitro acetylation assay with recombinant protein and identified acetylated lysines via mass spectrometry. Moreover, site-directed mutagenesis demonstrates that these lysines are critical to the ability of TIP60 to regulate $\Delta Np63\alpha$ protein levels. We also observed that knockdown of both TIP60 and $\Delta Np63\alpha$ led to a reduction in SCC proliferation. Using flow cytometry analysis, we found that both TIP60 and $\Delta Np63\alpha$ expression promoted G2/M progression. Our results therefore indicate that TIP60 mediates SCC growth in part due to regulation of $\Delta Np63\alpha$. The identification of TIP60 as a novel upstream regulator of $\Delta Np63\alpha$ provides researchers with a novel therapeutic target to combat this disease.