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Abstract Recently, there has been a growing interest in learning approaches that combine two
phases: an initial problem-solving phase followed by an instruction phase (PS-I). Two often
cited examples of instructional approaches following the PS-I scheme include Productive
Failure and Invention. Despite the growing interest in PS-I approaches, to the best of our
knowledge, there has not yet been a comprehensive attempt to summarize the features that
define PS-I and to explain the patterns of results. Therefore, the first goal of this paper is to
map the landscape of different PS-I implementations, to identify commonalities and differ-
ences in designs, and to associate the identified design features with patterns in the learning
outcomes. The review shows that PS-I fosters learning only if specific design features (namely
contrasting cases or building instruction on student solutions) are implemented. The second
goal is to identify a set of interconnected cognitive mechanisms that may account for these
outcomes. Empirical evidence from PS-I literature is associated with these mechanisms and
supports an initial theory of PS-I. Finally, positive and negative effects of PS-I are explained
using the suggested mechanisms.

Keywords Contrasting cases . Invention . Learningmechanisms . Problem solving . Productive
Failure . Student solutions . Compare and contrast

Introduction

Recently, there has been a growing interest in learning approaches that include two phases: an
initial problem-solving phase followed by an instruction phase (PS-I). Two commonly cited
examples of instructional approaches that apply the PS-I structure include Productive Failure

Educ Psychol Rev
DOI 10.1007/s10648-016-9379-x

* Katharina Loibl
katharina.loibl@ph-freiburg.de

1 University of Education Freiburg, Kunzenweg 21, 79117 Freiburg, Germany
2 University of British Columbia, Vancouver, Canada
3 Ruhr-Universität Bochum, Bochum, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10648-016-9379-x&domain=pdf


(e.g., Kapur 2016; Kapur and Bielaczyc 2012) and Invention (e.g., Schwartz and Martin
2004). The growing interest in these approaches is reflected in a striking number of recent
research publications (e.g., PsychINFO lists 11 journal papers that include BProductive
Failure^ in the title published in 2010–2014) as well as articles aiming at a broader audience
(e.g., article in the Time Magazine: Paul 2012). Despite this strong interest, to the best of our
knowledge, there has not yet been a comprehensive attempt to summarize the features that
define PS-I, study their impact on learning, and explain the patterns of results. In this paper, we
map the landscape of PS-I approaches, relate characteristic design features to learning, and
discuss potential cognitive mechanisms triggered by PS-I. Notably, by choosing this focus, we
do not aim to compare PS-I to alternative approaches in general but to take a closer look at the
mechanisms at play in PS-I.

PS-I approaches include a problem-solving phase and an instruction phase. During the
problem-solving phase, students attempt to solve a problem requiring the application of a yet
to-be-learned concept and usually fail to solve the problem successfully (Kapur 2010, 2012).
For example, in a study by Kapur (2012) on the topic of variability, students were given data
regarding different athletes and were asked to identify the most consistent athlete during the
problem-solving phase. Subsequently, students were taught the canonical solution explicitly.
We therefore refer to this second phase as the explicit instruction phase. In the example given
above, students were instructed about standard deviation and then applied it to the problem at
hand. In another example (Glogger-Frey et al. 2015), student-teachers were first given samples
of learning diaries and were asked to invent criteria for evaluating the application of learning
strategies in these samples. Subsequent explicit instruction introduced the desired criteria for
evaluations of learning diaries.

By including an explicit instruction phase, PS-I differs from other inductive methods such
as inquiry or (guided) discovery learning (cf. Loibl and Rummel 2014b). In inquiry or guided
discovery learning, the ultimate goal is that students discover the underlying model or concept
on their own, with various forms of support. In contrast, the problem-solving phase in PS-I is
not designed to facilitate the acquisition of the target concept (cf. Kalyuga and Singh 2015) as
the concept is taught during the subsequent explicit instruction phase. By asking students to
engage in problem solving prior to being taught the target knowledge, PS-I differs from other
instructional methods with upfront instruction. In summary, the uniqueness of PS-I lies not in
its components themselves (i.e., inductive problem solving and explicit instruction); it is their
combination and their order that define an instructional approach as PS-I. While the combi-
nation and the order of the two phases are common to all PS-I approaches, the specific
implementation of the phases may differ across manipulations.

The goals of the current paper are twofold. First, PS-I implementations are mapped and
commonalities and differences in their instructional design are identified. The review focuses
explicitly on studies that investigate effects of the two-phase PS-I approach and does not
consider studies that evaluate only one of the two phases (see Section 2 for details on the
selection process). In order to identify patterns in the effectiveness of different PS-I
implementations, we clustered the reviewed studies according to design features and analyzed
the learning outcomes within each cluster. Second, we identified a set of interconnected
cognitive mechanisms that may account for these outcomes (Section 3). We grounded these
proposed mechanisms in broader literature. While some of the mechanisms can directly be
associated with PS-I, others are more speculative and are so far supported only indirectly by
referring to related research. The paper puts forward a starting point for working towards a
theory of PS-I; we discuss where more research is needed to evaluate certain conjectures.
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Commonalities and Difference in PS-I Approaches and Their Impact
on Learning

While the overall structure (problem solving followed by explicit instruction) is common to all
PS-I approaches, differences exist in the way PS-I approaches implement the two phases.
Therefore, a clear definition of the differences across PS-I is needed. First, we identify design
features that span the space of PS-I implementations. Second, we relate these features to
patterns in learning outcomes.

We searched the databases PsycINFO and ERIC for published papers from the last 10 years
that use one of the following terms: Bproductive failure,^ Binvention activities,^ Binitial
problem solving,^ or a combination of Bproblem solving^ and either Bdirect instruction^ or
Bexplicit instruction.^ Last, we analyzed influential studies cited by most of the reviewed
papers that preceded this period (Schwartz and Bransford 1998; Schwartz and Martin 2004).
We then narrowed the list to include only studies that compared the two-phase PS-I approach
to an I-PS approach (i.e., an approach with the reverse order of the two phases; often termed
Direct Instruction condition). The I-PS control condition is needed as a baseline to identify
differences in the outcomes of different PS-I implementations. More precisely, positive or
negative effects of PS-I in comparison to the control condition offer indirect insight into the
impact of certain design elements that are not directly compared with one another. Note that
the main aim of this review was not to determine whether PS-I is superior or inferior than other
instructional designs in general but to take a closer look at patterns related to different PS-I
implementations. A broader comparison of PS-I to other instructional designs would require a
more detailed analysis of the learning goals related to all design features of the different
designs (cf. Kalyuga and Singh 2015). As we are interested in the impact of differences in the
PS-I implementations on learning outcomes, we further narrowed the list to include only
studies that measured learning. Notably, many of the selected studies were conducted by
Kapur et al.. However, as evident in Table 1, PS-I has also been investigated by a larger
number and variety of research groups.

Table 1 presents the selected papers. The first column assigns a number to each paper; the
second column includes the reference. Columns 3 and 4 provide short descriptions of the
implemented conditions (PS-I group and control group), and column 5 provides a summary of
the learning outcomes and effect sizes (if reported) regarding procedural knowledge, concep-
tual knowledge, and transfer. Procedural knowledge refers to the ability to correctly apply a
learned procedure (Rittle-Johnson and Schneider 2014). For example, students are asked to
apply the learned formula of standard deviation to problems isomorphic to the ones discussed
during explicit instruction. Conceptual knowledge refers to a deep understanding of the taught
concept and its components (Rittle-Johnson and Schneider 2014). Conceptual knowledge can
be reflected in principle-based reasoning or in the ability to connect different representations.
For example, students who learned standard deviation may be asked to predict and explain
what will happen to the standard deviation if all numbers in the sample were increased by a
constant. Transfer refers to the ability to adapt the learned concept to a new situation or a
different type of problem. For example, students who learned standard deviation may be asked
to answer a problem that requires a more advanced topic such as normalization (for example,
in order to be able to compare apples and oranges; Barnett and Ceci 2002). In column 6, we
describe the population and in column 7 the learning topic.

The two rightmost columns refer to two specific variations in the implementation of
the problem-solving phase and the explicit instruction phase: whether the problem-solving
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phase includes contrasting cases and whether the instructional phase builds on student
solutions.

Table 2 offers greater detail and examples for the variations that are introduced in Table 1. The
problem-solving phase has twomain variants, whichwe introduce in column 8 of Table 1 (problem
with contrasting cases). In some PS-I designs (often termed Productive Failure), data is presented
as part of a rich cover story that does not highlight the deep features of the topic and for which the
solution cannot be intuitively guessed (e.g., Kapur 2010, 2011, 2012; Loibl and Rummel 2014a).

Table 2 Examples illustrating variants of PS-I

Phase Variant 1 Variant 2

Problem solving Rich problem Contrasting cases

Which soccer player scores more consistently?
• Player A: 14, 9, 14, 10, 15, 11, 15, 11, 16, 12,

16, 12, 17, 13, 17, 13, 18, 14, 19, 14
• Player B: 13, 9, 16, 14, 10, 11, 13, 14, 15, 19,

14, 12, 15, 14, 17, 13, 14, 18, 14, 15
• Player C: 13, 18, 15, 10, 16, 10, 17, 10, 12,

14, 19, 14, 18, 9, 10, 18, 11, 10, 18, 18

Which soccer player scores
more consistently?

Contrasting cases #1:
• Player A: 9, 10, 10, 11
• Player B: 5, 10, 10, 15
Contrasting cases #2:
• Player B: 5, 10, 10, 15
• Player C: 5, 5, 15, 15

Explicit instruction Building on student solutions Canonical solution only

Many of you calculated the sum of the deviation
from one year to the next. Some used the
deviations as calculated and summed them up,
others took absolute values. This led to different
results. What is the benefit of one solution method
or the other? …

One solution that experts often use is
standard deviation:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi�meanð Þ2
N

q

One solution that experts often
use is standard deviation:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi�meanð Þ2
N

q

Table 3 Classification of studies and summary of learning outcomes

Contrasting
cases

Building on
student
solutions

Procedural assessment Conceptual assessment Transfer assessment

no yes +: 6, 7, (11)
=: 8, 10, (11), (13b), (14a)
-: (13b), (14a)

+: 6, 7, 8, 10, 11, 13b, 14a
=:
-:

+: 6, 8, (10)
=: (10)
-:

yes no +:
=: 4, 16, 19
-:

+:
=:
-:

+: (1), (16), 18, 19, (20)
=: (1), (16), (20)
-: 4

yes yes +:
=: 14b
-:

+: 14b, 17
=:
-:

+:
=: 17
-:

no no +: (12)
=: 2, 9, (12), 13a, 15
-: 3,

+: 2, 9
=: 3, (12), 13a
-: 5, (12)

+: 9
=: 15
-:

Note. +, =, - indicate positive, null, or negative effect respectively for PS-I as compared to the control
condition. Numbers refer to the row numbers in Table 1. Numbers in parentheses refer to papers with multiple
studies or assessments that found mixed results.
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By deep structure, we refer to the underlying principles of the domain (Chi et al. 1981). In the rich
story example displayed in the left column of Table 2, each dataset includes 20 values, and datasets
differ from each other across a variety of features. Thus, students’ attention is not explicitly directed
to the deep features. In contrast, in other PS-I designs (often termed Invention), the relevant
information is given to students in the form of contrasting cases (e.g., Belensky and Nokes-Malach
2012; Glogger-Frey et al. 2015; Roll et al. 2009). Contrasting cases consist of small sets of data,
examples, or strategies presented side-by-side (e.g., Schwartz and Martin 2004; Schwartz and
Bransford 1998). These minimal pairs differ in one deep feature at a time ceteris paribus, thereby
highlighting the target features. In the example provided in the right column of Table 2, the datasets
of player A and player B differ with regard to the range, while other features (e.g., mean, number of
data points) are held constant. The next pair of datasets addresses another feature: player B and C
have the same mean and range but different distribution of the data points.1 Regardless of potential
differences in the conceptualizations used in the papers, in our overview, contrasting cases are
merely classified as such, if the cases differ in only one feature at a time to make the deep features
salient and if they are introduced during the problem-solving phase to guide students’ thinking.

During the explicit instruction phase, the canonical solution is explained. This phase has
two main variants, which we introduce in column 9 of Table 1 (building instruction on student
solutions). In some implementations (e.g., Belenky and Nokes-Malach 2012; Glogger-Frey
et al. 2015; Roll et al. 2009; Schwartz and Martin 2004), students are given the canonical
solution without referring back to student solutions. In other studies (e.g., Kapur 2010, 2011,
2012; Loibl and Rummel 2014b; Roll et al. 2011), instruction includes an additional compo-
nent in that the teacher builds on typical student-generated solutions before explaining the
structurally relevant components of the canonical solution. Thus, students have the opportunity
to compare and contrast failed or suboptimal solutions against the canonical one (Kapur and
Bielaczyc 2012). A brief example of how two student solutions can be compared is provided in
Table 2. The comparison in the example aims to help students realize that taking absolute
values is a valid approach for measuring distances between data points.

In summary, each of the two phases of PS-I has two main variants, resulting in four
different instantiations of PS-I. As far as we can tell from our analysis of the papers, the
differences described above are rarely addressed explicitly and have not yet been investigated
systematically. The lack of attention to these variations seems surprising given that seemingly
small modifications to an instructional design can trigger different cognitive mechanisms and
may thereby have a major impact on learning outcomes.

Table 3 summarizes the patterns of learning outcomes that we found in the analyzed papers
(see Table 1) sorted by differences in the specific PS-I design. It is important to emphasize that
we were aiming to identify patterns in the data based on our descriptive analyses of the papers.
We were, however, not aiming to perform a statistical meta-analysis due to the rather small
number of studies.

The first row in Table 3 includes studies in which a rich problem (i.e., without contrasting
cases) is followed by instruction that builds on student solutions. In all studies in this class, the
PS-I conditions outperformed the control conditions on conceptual knowledge and/or mea-
sures of transfer, whereas the results regarding procedural knowledge were mixed.

The second row includes studies that introduce contrasting cases in the problem-solving
phase, followed by instruction without student solutions. Also in most of these studies, except

1 For a discussion on the different processes triggered by contrasting cases in comparison to rich problems, see
Loibl and Rummel (2014b).
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the ones in no. 4, the PS-I conditions outperformed the control conditions on transfer. In the
studies in no. 4 (Glogger-Frey et al. 2015), the PS-I condition was outperformed by the control
condition on transfer items. No study in this row found an effect of PS-I on procedural
knowledge.

A third class of studies, described in the third row, includes studies that combine the use of
contrasting cases during the problem-solving phase with instruction that builds on student
solutions. These studies found beneficial effects on conceptual knowledge. One of these
studies (no. 14: Loibl and Rummel 2014b) also found that the combination of both elements
(contrasting cases during the problem-solving phase and instruction building on student
solutions) is not necessarily better than building upon student solutions without the use of
contrasting cases.

While the results of these three classes of PS-I designs show a strong overall trend in favor
of PS-I with regard to conceptual knowledge and transfer (cf. Table 3, rows 1–3: with one
exception all studies in these classes show positive effects in at least one of the two
assessments), it is important to emphasize that other factors beyond the sequence of problem
solving and instruction may account for this effect: It is possible that contrasting cases during
problem solving and/or instruction building on student solutions were implemented in the PS-I
condition but not in the control condition. This potential confound does not allow to conclude
whether learning effects are due to the PS-I structure or whether they stem from the additional
design elements (contrasting cases and/or building instruction on student solutions). To
account for the confound (different design elements plus different sequence), we analyzed
the materials and procedures reported in the papers to evaluate whether the studies provided
the same problem description and data during the problem-solving phase (with or without
contrasting cases) and the same content and prompts during the explicit instruction phase (with
or without student solutions) across conditions.2 Indeed, eight studies confounded design
elements with instructional sequence (nos. 6, 7, 8, 10, 11, 14, 18, 20: Kapur 2010, 2011,
2012; Kapur and Bielaczyc 2011, 2012; Loibl and Rummel 2014b; Schwartz and Bransford
1998; Schwartz and Martin 2004). Six studies used identical materials across conditions (nos.
1, 4, 13, 16, 17, 19: Belenky and Nokes-Malach 2012; Glogger et al. 2015; Loibl and Rummel
2014a; Roll et al. 2009, 2011; Schwartz et al. 20113). Given the high number of confounded
studies, it is possible that the effect reflected in Table 3 is due to better learning resources
(providing contrasting cases and/or building instruction on student solutions) being available
to PS-I participants. However, five of the six papers that used the same materials across
conditions show the same pattern of beneficial effects on conceptual knowledge and/or
transfer. This (albeit limited) set of studies suggests that the advantage of PS-I designs over
I-PS conditions probably does not stem from providing contrasting cases during problem
solving or building instruction on student solutions alone and that the PS-I sequence at least
contributes to the beneficial outcome.

Finally, row 4 includes studies without contrasting cases during the problem-solving phase
and with instruction that does not build on student solutions. Notably, all of these studies used
the same materials in both conditions. There is no clear trend for studies in this category. The

2 Naturally, some wording is expected to differ by condition (e.g., Binvent a formula/strategy for the following
problem^ vs. Bsolve the problem using this formula/strategy^), which is not counted as confound.
3 In the studies in no. 19, the instruction and the worksheets with contrasting cases were held constant across
conditions. However, students in the I-PS condition received an additional reminder of the formula and a worked
example prior to solving each worksheet, whereas students in the PS-I condition were told what invention means
and what they need to invent prior to their first problem-solving attempt.
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mixed results in this class of studies could be due to statistical noise. Alternatively, issues with
the implementation of conditions may account for the lack of trend. In one study (no. 15:
Matlen and Klahr 2013), the pretest included an invention activity for all conditions. This
diffusion of treatment may explain the missing effect (however, Toth et al. 2000 suggest that
there was no pretest × treatment interaction; for a more detailed discussion of this issue, see
Kapur 2012). In the studies that found beneficial effects for PS-I, students worked on rather
short problems (no. 2: DeCaro and Rittle-Johnson 2012) or contrasting cases were discussed
during the explicit instruction phase (no. 9: Kapur 2014b). In contrast, studies with rich
problems found no or negative effects when neither contrasting cases during the problem-
solving phase nor instruction that builds on student solutions were implemented (nos. 3, 5, 12,
13a, and 15: Fyfe et al. 2014; Hsu et al. 2015; Loehr et al. 2014; Loibl and Rummel 2014a;
Matlen and Klahr 2013). This result sheds some light on the preceding discussion of design
elements: Without contrasting cases during problem solving and without instruction building
on student solutions, there seem to be no clear benefits for the PS-I structure.

This finding matches the outcome of a large number of worked example studies, which
often do not include contrasting cases or instruction building on student solutions: Many
studies of worked examples find beneficial effects for example-problem pairs (cf. I-PS) in
comparison to problem-example pairs (cf., PS-I; e.g., Hsu et al. 2015; Leppink et al. 2014;
Reisslein et al. 2006; Van Gog et al. 2011). Reviewing the worked example literature in detail
is beyond the scope of this paper, but recent review papers on worked examples (e.g., Renkl
2014; Van Gog and Rummel 2010) draw a clear picture, favoring example-problem pairs over
problem-example pairs. Taking evidence from the two bodies of research (PS-I and worked
examples literature) together, it seems that I-PS may outperform PS-I when the PS-I design is
such that students neither work with contrasting cases during problem solving nor are student
solutions discussed during instruction.

Given that the majority of PS-I studies were conducted in mathematics, it is of interest to
look at whether results extend to other domains as well. One study that found negative effects,
despite using contrasting cases, targeted a psychology topic (no. 4: Glogger-Frey et al. 2015).
Thus, one could argue that the effectiveness of PS-I approaches might depend on the domain.
However, another study that also targeted a psychology topic found beneficial effects in
comparison to several control conditions (no. 18: Schwartz and Bransford 1998). Therefore,
the domain alone does not seem to tell the whole story. Due to the limited number of studies
with topics outside math-related domains, the effect of the domain needs to be further
investigated in future studies.

In summary, in our review, we found evidence suggesting that PS-I is better suited to
promote conceptual knowledge and transfer but has no clear benefits for procedural knowl-
edge. This outcome supports the notion that different learning goals (e.g., procedural fluency
vs. conceptual understanding) require different instructional means (cf. Kalyuga and Singh
2015; Koedinger et al. 2012). In addition, the positive effects of PS-I on conceptual knowledge
and transfer are limited to PS-I designs where students work with contrasting cases during
problem solving and/or that involve instruction building on student solutions (cf. rows 1–3 in
Table 3). Without these design elements, the effects of PS-I are less favorable or can even be
negative for learning (cf. row 4 from Table 3). In the following section, we discuss how this
pattern of results may be explained with reference to cognitive mechanisms triggered by the
different designs of PS-I.
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Identifying Mechanisms that Make PS-I Productive for Learning

The above review demonstrated that not all implementations of PS-I are equally beneficial.
Against this background, we aim to explain how specific features of the problem solving phase
and the instruction phase in PS-I foster learning. Kapur and Bielaczyc (2012) proposed several
mechanisms to explain the effectiveness of one particular type of PS-I implementation,
Productive Failure. In this section we build on their work and expand it to include additional
forms of PS-I. We ground the discussion of the mechanisms in general learning theories and
support each hypothesized mechanism using available data from PS-I studies. Specifically, for
each mechanism, we (a) define the relevant mechanism, (b) describe how the design of PS-I
inherently facilitates the mechanism, and (c) discuss how the mechanism explains the
abovementioned patterns in learning outcomes. Finally, we make the case that the synergy
between these mechanisms, as facilitated by specific PS-I manipulations, further supports
learning.

As most studies included in our review (see Table 1) were carried out in the domain of
mathematics, our conclusions should be taken in light of this limitation. Still, when possible,
we included examples from other disciplines. By suggesting domain-general mechanisms and
highlighting their role in PS-I, we hope to lay the foundations for additional work on PS-I in a
variety of domains.

Prior Knowledge

The first mechanism accounting for the effectiveness of PS-I for learning proposed by Kapur and
Bielaczyc (2012) is Bactivation and differentiation of prior knowledge in relation to the targeted
concepts^ (p. 49). Prior knowledge is stored in schemas (e.g., Linn 1995; for an overview, see
Anderson 1983). It has been well established that learning takes place when these schemas are
modified to support integration of new knowledge (e.g., Sweller et al. 1998). Modification and
integration requires that existing schemas are activated (e.g., Sweller 1988). Encouraging students
to activate prior knowledge has been found to be effective for learning in a variety of instructional
designs (i.e., not only within PS-I). For example, Schmidt et al. showed that prior knowledge
activation by means of small-group discussion enhances subsequent text processing (Schmidt et
al. 1989). They explain their results by suggesting that new information is more easily integrated
with prior knowledge components once prior knowledge is activated.

The activation of prior knowledge is inherent in PS-I: Students typically access their prior
knowledge and ideas in order to invent solutions to the new problem (Kapur and Bielaczyc
2012; Schwartz and Bransford 1998; Schwartz and Martin 2004; Schwartz et al. 2007). In
order to be effective, the problem provided in the problem-solving phase should be one for
which students have some prior knowledge and ideas. Thus, knowledge activation in this
setting depends on a careful design of the problem. Notably, because students have not yet
received formal instruction on the solution, they are likely to activate their intuitive ideas.
Intuitive ideas are informal understandings that students gain based on their real-life experi-
ences (cf. Nathan et al. 2010). While prior knowledge usually refers to canonical knowledge,
intuitive ideas are not yet consolidated and may therefore be partial or erroneous. Nevertheless,
it has been argued that students’ intuitive ideas provide additional resources for future learning
(Kapur and Bielaczyc 2011).
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The PS-I literature itself provides direct support for the prior knowledge mechanism.
Several studies (Kapur 2014a, 2014b; Kapur and Bielaczyc 2011; Roll et al. 2011) compared
conditions where students attempt to solve problems by themselves to conditions where
students evaluated pre-designed solutions. In these studies, students in the PS-I condition
and the evaluation (control) condition worked with erroneous or incomplete solution ap-
proaches (either self-generated or given) prior to instruction. All studies found benefits for
students generating their own solution ideas in comparison to evaluating ideas proposed by
others. As generating own ideas focuses on activating one’s very own prior knowledge, this
finding provides support for the proposed mechanism.

Can this mechanism alone explain the PS-I findings? Students activate prior knowledge in
all PS-I manipulations, including the less effective ones (cf. row 4 in Table 3). Also, prior
knowledge activation should support all types of learning, including acquisition of procedural
knowledge (which is not typically benefited by PS-I). Thus, this mechanism does not provide a
sufficient explanation in and by itself when explaining the differentiated effects of PS-I (i.e.,
positive effect on conceptual knowledge and transfer but not necessarily on procedural
knowledge; only effective with contrasting cases and/or building instruction on student
solutions).

Indeed, not all forms of prior knowledge activation are productive for learning as pointed
out by Schwartz et al. (2007). In one of their examples, during instruction on sampling
methods, students activated prior knowledge of the concept of fairness. After activating this
concept, students perceived fairness as a sufficient criterion to judge sampling methods and
they perceived all fair samples to be good ones, even when they were biased (e.g., self-
selection). Literature on conceptual change further discusses how certain knowledge can
hamper the acquisition of new knowledge, if existing and new knowledge components are
not compatible (e.g., Chi et al. 1994; Prediger 2008; Vosniadou and Verschaffel 2004). To give
just one example, knowing that multiplication of natural numbers leads to a result which is larger
than each number hampers the understanding of multiplication with fractions (Prediger 2008).

To conclude, prior knowledge activation allows students to better integrate the following
instruction with existing schemas. However, these schemas can be partial, naïve, or even
erroneous. As will be addressed in the next sub-section, the activation of prior knowledge is a
necessary prerequisite for becoming aware of these gaps in the existing schemas, because
students can only notice where their knowledge is insufficient, if they bring their existing
knowledge to bear on a problem.

Awareness of Knowledge Gaps

Research has shown that students process canonical solutions more deeply when they are
aware of their own impasses and knowledge gaps (VanLehn et al. 2003). According to
VanLehn’s (1999) impasse-repair-reflect process, once the learner reaches an impasse, she or
he applies strategies to repair the impasse. A similar process is described in Chi’s (2000) work
on repairing mental models. In her imperfect mental model view, Chi states that learners’ initial
mental models often differ from normative models. Before students can repair their models,
they need to become aware of the flaws in them. The importance of awareness of gaps and
limitations of one’s knowledge is supported by various findings: Heckler et al. showed that
exposing students to the fact that salient factors cannot explain a certain phenomenon (in our
example average cannot explain variability, in their example a certain computer chip compo-
nent cannot be installed in a specific kitchen appliance) prompts students to look for alternative
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explanations (Heckler et al. 2008). Similarly, Acuña et al. showed that warning of possible
errors before presenting an instructional explanation can foster learning as the warning helps
students to become aware of their own knowledge gaps (Acuña et al. 2010; Sánchez et al.
2009). Siegler (1983) argues that students become motivated to learn new information when
they realize that their initial ideas make wrong predictions.

Knowledge gaps are better identified when they are experienced (Eva and Regehr 2011;
Needham and Begg 1991). In PS-I studies, students report higher perceived knowledge gaps
when attempting to invent prior to instruction in comparison to students who receive instruc-
tion prior to solving problems (Glogger-Frey et al. 2015; Loibl and Rummel 2014a). Note that
this result was found for a mathematics topic (standard deviation, Loibl and Rummel 2014a) as
well as a non-mathematics topic (evaluation of learning strategies, Glogger-Frey et al. 2015).

Failing to solve a problem is not effective if students are not aware of their failure. PS-I
manipulations differ in the way and extent in which they foster this awareness. At times, students
simply realize that their initial ideas do not offer complete solutions during problem solving.
However, studies that provide their data in the form of rich problems may not lend themselves to
easy self-evaluation. In these cases, subsequent instruction that builds on common erroneous
solutions before explaining the canonical solution can help students realize the limitations of their
knowledge and increase their curiosity to receive more information (Loibl and Rummel 2014a).
Alternatively, some studies use contrasting cases that can be intuitively ranked. In the example
presented in the right column of Table 2, students can intuitively see that player A scores more
consistently than player B and player B scores more consistently than player C. Students can use
their intuitive ranking of the cases to evaluate their invented solution and extract grounded feedback
(Nathan 1998; Roll et al. 2014). In the example in Table 2, player B and player C have the same
range.When comparing this outcome to their intuitive ranking, students may realize that range does
not solve the problem. Indeed, Roll et al. showed that directing students to make predictions using
contrasting cases resulted in students identifying their errors and revising their solutions more often
than students who had access to the same contrasting cases but were not prompted to make these
predictions (Holmes et al. 2014; Roll et al. 2012).

To summarize, identifying one’s own knowledge gaps is necessary to initiate modifications
of existing (partial, naïve, or erroneous) schemas. PS-I approaches can support this in two
ways: either using contrasting cases during the problem-solving phase that support students in
intuitively evaluating their solutions or by reviewing student solutions at the beginning of the
instruction phase. Implementations of PS-I that do not include any of these design features are
bound to be less effective in promoting students awareness of their knowledge gaps and thus
less effective in supporting mental model repairs and learning.

Recognition of Deep Features

Another mechanism proposed by Kapur and Bielaczyc (2012) to explain the effectiveness of
Productive Failure (i.e., one particular implementation of PS-I) concerns the deep features of
the target knowledge. They suggest that Productive Failure helps students identify, explain,
and organize deep features of the target knowledge. The impact of noticing and encoding deep
features has been well established in the literature on expertise (e.g., Chi et al. 1981) and on
problem solving (e.g., Duncker 1945; Quilici and Mayer 1996, 2002; Wertheimer 1959). Here
we review literature that gives evidence for contribution of PS-I to the recognition and
encoding of deep features. Interestingly, the variations of PS-I address deep features in
different ways:
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Identifying deep features is inherent to developing solutions to problems with
contrasting cases, because the cases vary in one feature at a time (e.g., Schwartz
and Martin 2004). Indeed, Loibl and Rummel (2014b) showed that students address
more deep features in their solutions if provided with contrasting cases in comparison
to rich problems. Similarly, Roll et al. used contrasting cases to direct students’
attention to some deep features, but not others, during the problem-solving phase
(Roll et al. 2012). Students who were explicitly directed to examine the contrasting
cases spontaneously explained the deep features three times as often as students in the
control condition (despite also having contrasting cases available), who rather self-
explained features that were not relevant for the solution.

Another way of highlighting deep features in PS-I is to compare non-canonical
student solutions to each other and to the canonical solution during subsequent
instruction (e.g., Kapur 2012; Loibl and Rummel 2014a). Explaining why erroneous
solutions are incorrect has been found to be beneficial for learning, in some cases
even more than explaining correct solutions (Booth et al. 2013). Furthermore, the
comparison supports students in detecting differences between their own prior ideas
and the canonical solution (Loibl and Rummel 2014a). More precisely, through
comparing them to other students’ solution and to the canonical solution, students
experience how their solution approaches fail to address one or more important
aspects of the problem (e.g., diSessa et al. 1991). This process guides students’
attention to the deep features addressed by the canonical solution (cf. Durkin and
Rittle-Johnson 2012). Similarly to the use of contrasting cases, the comparison of
student solutions should explain one deep feature at a time, leading to a meaningful
understanding of these features (see example in Table 2 as well as the discussion in
Loibl and Rummel 2014a).

Introducing the canonical solution after highlighting the deep features (by providing contrast-
ing cases during problem solving or by building instruction on student solutions) enables students
to organize the target knowledge by its deep features. In contrast, if the initial problem does not
include contrasting cases and the instruction does not build on student solution, it seems unlikely
that students notice and elaborate on the deep features on their own—a possible explanation for
the limited effectiveness of these PS-I manipulations (cf. Loibl and Rummel 2014a).

When students encode their knowledge by its deep features, it should be easier for them to
adapt it to new situations. Therefore, we would expect benefits on items requiring flexibility
(including procedural flexibility items, cf. Rittle-Johnson and Star 2009) and transfer. In
contrast, we would not expect effects on conventional procedural knowledge items requiring
the mere application of a learned procedure as a whole. Indeed, the findings on PS-I show
positive effects on transfer items, if contrasting cases were provided during problem solving or
the instruction built on student solution. PS-I results on procedural knowledge are mixed
(ranging from positive to negative effects). This might be due to different operationalization of
procedural knowledge with procedural flexibility (which require adapting the learned proce-
dure) or conventional items (which require applying the learned procedure as is). An analysis
of the procedural posttest items administered by the different research groups could shed light
on this hypothesis. However, this task is beyond the scope of the current paper.

Is the highlighting of deep features sufficient to explain the PS-I effect? Deep features can
also explicitly be addressed during instruction without previous problem solving (e.g., Kapur
and Bielaczyc 2011; Loibl and Rummel 2014a). However, in these two examples, instruction
that addressed the deep features followed by problem solving was still less effective than
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problem solving followed by identical instruction. Thus, it seems that highlighting the deep
features requires activation of prior knowledge and raising awareness of knowledge gaps in
order to be most effective.

Fig. 1 Knowledge acquisition in PS-I
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Towards a Theory of Problem Solving Followed by Instruction

Above we have argued that PS-I approaches prompt students to activate their prior knowledge,
become aware of their specific knowledge gaps, and encode knowledge in relation to deep
features. Next we investigate how these mechanisms complement each other as we work
towards a theory of PS-I.

Figure 1 illustrates the interaction between the three suggested mechanisms. Students enter
a learning situation with prior knowledge (visualized as a shaded grey area, [1]). The students
are then confronted with a problem targeting a new topic (e.g., standard deviation). They
already know relevant concepts, such as average or range, which they activate in their attempt
to solve the problem ([2]). While some students may be satisfied with their initial solution
(e.g., average or range), others may realize the limitations of their existing knowledge and
become aware of their knowledge gaps (white part of the box in [3]). This awareness of
knowledge gaps is more likely if the problem includes contrasting cases or if the teacher builds
on student solutions prior to introducing the canonical solution because these design elements
offer detailed situational feedback on students’ initial attempts. By comparing contrasting
cases during the problem-solving phase or discussing student solutions during the instruction
phase, students are encouraged to recognize the deep features of the problem (components of
the box in [4]). For example, when learning standard deviation, by comparing two sets with
similar extreme values but different distributions, students can realize that their solution
method should take all values into account. Overall, by the time students receive explicit
instruction on the canonical solution, they have activated their prior knowledge, realized its
limitations, and identified a set of deep features that needs to be addressed. Subsequently, when
eventually receiving explicit instruction about the canonical solution, students are likely to
perceive the presented solution as a set of functional elements that fit in their knowledge gaps
and address the identified deep features (grey box in [5]). For example, students understand the
sequence and the goals of mathematical manipulations that are applied to determine standard
deviation: calculating deviations from a fixed reference point to avoid sequencing effects,
squaring and adding them to include all values and to avoid that positive and negative
deviations cancel each other out, and dividing by the number of data points to control for
sample size.

We argue that there is a cascading effect: To encode the target knowledge according to the
deep features, students first need to identify the features. To identify the features, they first
need to realize what their own knowledge fails to achieve. To do that, they first need to activate
their prior knowledge. We suggest that this cascading effect leads to well-connected and well-
organized knowledge. The high degree of connectedness with prior knowledge (i.e., with what
students both did and did not know) and students’ ability to decompose the knowledge into its
deep features allow students to apply the learned knowledge to new situations and to adapt it
accordingly. Therefore, the expected learning outcomes based on the explanations above
match the general findings on PS-I described earlier positive effects on transfer and conceptual
items but only if PS-I is implemented with contrasting cases during problem solving or
instruction building on student solutions.

Consolidating Contradictory Results

The cascading effect of the three proposed mechanisms can explain most patterns that
were identified in Table 3. Almost all studies that used contrasting cases during the
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problem-solving phase and/or built on student solutions during the instruction phase
showed benefits for PS-I on conceptual or transfer assessments compared with a
control condition. The only paper with differing outcomes is the paper by Glogger-
Frey et al. (2015, see Table 1 no. 4). In their studies, studying worked examples that
display and explain the relevant deep features was more beneficial than inventing own
methods with contrasting cases. It is hard to explain why this specific paper shows
different outcomes. It might be a false negative. However, there may also be specific
characteristics in the design of the studies that led to the different outcomes. One
potential explanation is that the worked examples were better designed to highlight
and explain the deep features as the contrasting cases. An in-depth analysis of the
used contrasting cases and worked examples and their potential to make the features
salient would be needed to answer this question. Either way, these studies demonstrate
an alternative route (using worked examples) to trigger similar mechanisms, namely,
encoding the solution in relation to its deep features. Indeed, well-designed worked
examples provide the information in meaningful building blocks that make the deep
features salient (e.g., Renkl 2005).

We did not find beneficial effects for PS-I in studies that did not include contrast-
ing cases in the problem-solving phase nor built on student solutions in the instruction
phase (bottom row of Table 3). In these studies, learners still activated their prior
knowledge during problem solving to invent their solutions. However, in these
implementations, learners may have remained satisfied with their erroneous solutions
and may not have identified the features required for the correct solution. Only when
learners realize that their invented solution is not sufficient and that the canonical
solution rest upon a set of deep features, learners may be motivated to revise their
ideas and may appreciate the canonical solution taught during instruction.

However, there are two studies in the last row of Table 3 that found benefits for
PS-I on conceptual assessments: First, in the study by Kapur (2014b, see Table 1 no.
9), contrasting cases were discussed during the explicit instruction phase. Second, in
the study by DeCaro and Rittle-Johnson (2012, see Table 1 no. 2), students were
given accuracy feedback on their solutions. It seems that in this context the feedback
achieved a similar goal to that of providing contrasting cases or building instruction
on student solutions. Naturally this is only a speculation, as one study alone does not
allow drawing conclusions.

Limitations and Future Research

To test our theoretical assumptions, further research is needed to extend the discussed
findings on the three mechanisms. More work is especially needed with regard to the
deep feature mechanism. While we have direct support that PS-I promotes prior
knowledge activation (e.g., Kapur 2014a; Kapur and Bielaczyc 2011; Roll et al.
2011) and awareness of knowledge gaps (Glogger-Frey et al. 2015; Loibl and
Rummel 2014a), the support for the deep feature mechanism is more indirect (number
of deep features addressed in the invented solutions, Loibl and Rummel 2014b; Roll
et al. 2012; Wiedmann et al. 2012; number of deep features noticed in a post-test
assessment, Roll et al. 2011). Future research could aim at implementing conditions
directed at triggering the proposed mechanisms one by one to test our assumptions

Educ Psychol Rev



more thoroughly. In addition, further research should focus in more detail on how the
different mechanisms build upon each other and how they can be supported to best
foster well-connected knowledge—both in PS-I and other approaches.

The main limitation of existing PS-I studies is their domain specificity, with studies
in mathematics clearly dominating. The few studies that were done in other domains
(e.g., Schwartz and Bransford 1998) suggest that the mechanisms transfer, at least to
some degree, to other domains. We believe that the mechanisms are especially
explanatory for rather structured domains that allow for clear identification of deep
features and evaluation of solution attempts. However, further studies are required to
test this claim.

Notably, our proposed mechanisms focus solely on cognitive explanations. We
assume that other processes, such as motivation (Belenky and Nokes-Malach 2012;
Glogger-Frey et al. 2015) or collaborative structure (Sears 2006; Mazziotti et al. 2014,
2015; Westermann and Rummel 2012), contribute to learning from PS-I. However, it
seems that non-cognitive mechanisms alone could not explain the overall patterns of
the findings for the following reasons. Collaborative (e.g., Kapur 2012) as well as
individual (e.g., Kapur 2014b) PS-I have been shown effective and results of studies
that compare individual and collaborative PS-I remain inconclusive (Sears 2006;
Mazziotti et al. 2014, 2015). Motivational factors certainly play a role in PS-I.
However, there are mixed relations with learning outcomes: Glogger-Frey et al.
(2015) found increased motivation to learn the canonical solution after invention,
but this was not reflected in the learning outcomes measured after instruction.
Belenky and Nokes-Malach (2012) showed that invention can foster mastery orienta-
tion which in turn increased learning in their study. Yet, this effect was only true for
students who entered the study with low mastery orientation. Also, motivational
accounts may not explain the differentiated effects on transfer and conceptual knowl-
edge versus procedural knowledge.

Conclusion

To conclude, PS-I approaches that consist of a problem-solving phase followed by an
instruction phase have received a growing interest as evident by a fairly large number of
recent research publications. In this paper, we aimed to identify differences in the implemen-
tation of PS-I designs and to descriptively relate these differences to learning outcomes. Our
review indicates that PS-I can be beneficial mainly for the acquisition of conceptual knowledge
and the ability to transfer. However, whether this potential unfolds depends to a large degree on
the implementation of PS-I: PS-I seems beneficial only if the problem is presented in the form
of contrasting cases that differ in only one feature at a time or if student solutions are discussed
during subsequent instruction. We proposed three complementary cognitive mechanisms that
facilitate learning from PS-I, if contrasting cases and/or student solutions are implemented:
prior knowledge activation, awareness of knowledge gaps, and recognition of deep features.
We argue that the synergy between these mechanisms leads to well-connected and well-
organized knowledge that explains the divergent findings of PS-I approaches—both regarding
specific PS-I implementations and regarding different types of knowledge. By working
towards a theory of PS-I, we hope to advance the discussion about the value of failed
problem-solving attempts followed by instruction in specific variations of PS-I.
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