Computer Engineering (CEG) Masters Degree

REPORT PREPARED by: Pei, Yong

ACADEMIC YEAR COVERED BY THIS REPORT: 2020-2021

I. PROGRAM LEARNING OUTCOMES

The program balances theory, software, hardware, and practice with coursework-only and thesis options available. It offers diverse courses in computer engineering and the opportunity to develop research skills in computer engineering areas. The program’s strengths include a wide range of faculty expertise, many computer engineering laboratories, and a balance of theory and practice. Degree requirements include hardware and software systems design and analysis. Program Learning Outcomes Graduates of the Master's of Science program in Computer Engineering will be able to • design and implement novel hardware and software systems to solve computer engineering problems. • apply and integrate existing software and hardware tools and modern computer engineering techniques to solve complex problems in computer engineering. The program learning outcomes are further mapped into the following specific course learning outcomes • Learn system-level design of embedded systems that involve both hardware and software • Develop interpreter-based specification (operational semantics) of programming languages • Transform formal specifications to design and code • Should be able to write medium sized programs using distributed computing languages and/or libraries

II. PROCEDURES USED FOR ASSESSMENT

A. Direct Assessment

(i) Assessment Schedule Completed Program Learning Outcome Data Collection Term Review Term 1. Building systems Annual Fall 2020, Fall 2021 2. Problem solving Annual Fall 2020, Fall 2021 (ii) Alignment of program learning outcome to course learning outcomes 1. Building systems CEG 7360 Learn system-level design of embedded systems that involve both hardware and software 2. Problem solving CS 7100 Develop interpreter-based specification (operational semantics) of programming languages CS 7140 Transform formal specifications to design and code CEG 7370 Should be able to write medium sized programs using distributed...
computing languages and/or libraries (iii) Course learning outcomes to
assignment being collected and assessed CS 7360 Learn system-level design of
embedded systems that involve both hardware and software Design projects CS 7100
Develop interpreter-based specification (operational semantics) of programming
languages Programming projects CS 7140 Transform formal specifications to design
and code Programming projects CEG 7370 Should be able to write medium sized
programs using distributed computing languages and/or libraries Programming
projects (iv) Collection of student artifacts assessed Term Class Collections
Assessed Fall 2020 CEG 7360 Design project descriptions, grade distribution,
student work. Fall 2018 CS 7100 Programming project descriptions, grade
distributions. Fall 2020 CS 7140 Programming project descriptions and student
work. Fall 2020 CEG 7370 Programming project descriptions and student work.

B. Scoring of Student Work

The program learning outcomes are mapped to specific learning outcomes of the
program core courses. Core courses are those that are required as a part of each
student’s Program of Study (POS). Therefore, each program outcomes are measured
at least once over the course of a student’s POS. Learning outcomes are directly
assessed by evaluating the student performance in corresponding project
assignments and exams.

C. Indirect Assessment

The program educational outcomes were established with input from and review by
the external advisory board (EAB). In addition, the advisory board has reviewed
and expressed approval of all major program changes made in the last five years.
The Department of Computer Science and Engineering external advisory board
includes representatives of local, regional and other businesses that
historically hire Department graduates, as well as successful alumni of our
programs. The board meets each Fall and Spring semester to review program
objectives, curriculum and program changes, and new programs and courses. They
make both high-level strategic recommendations and specific course and
curriculum suggestions to the program. “College of Engineering and Computer
Science, Master of Science Assessment of Learning Outcomes During Exit
Interview” surveys are used as additional measures for indirect assessment.
Survey is instrumented to collect graduating student assessment of self-efficacy
for the learning outcomes. For each outcome students are asked to rate their own
level of ability/achievement.

III. ASSESSMENT RESULTS/INFORMATION:

CEG 7360 - Design project descriptions, grade distribution, student work. CS
7100 - Programming project descriptions, grade distributions, student work. CS
Learn system-level design of embedded systems that involve both hardware and software. Develop interpreter-based specification (operational semantics) of programming languages. Transform formal specifications to design and code. Should be able to write medium sized programs using distributed computing languages and/or libraries.

IV. ACTIONS TO IMPROVE STUDENT LEARNING

The program institutes a formal assessment program involving the collection of students performance checkpoint data related to each educational outcome of the program. Data have been collected since Fall, 2018. A formal program assessment was conducted by the Graduate Studies Committee of the Department of Computer Science and Engineering in Fall 2020 and Fall 2021. This data and assessment results are shared through Pilot among the GSC faculty members and student advisors. The GSC faculty and student advisors review all program courses every three years to ensure that course pre-requisites are relevant, student learning objectives are accurate and sequential courses are aligned. In response to the continual program assessments, in the last five years the Graduate Studies Committee has enacted several significant changes to the program curriculum designed to increase flexibility and student retention, while maintaining program rigor. Among these changes 1) The number of core courses was reduced from three to two, with every student required to take the core course CEG 7360 - Embedded Systems. 2) In recognition of increasing levels of specialization in the field, the number of 6000-level courses allowed in the program was increased from two to four for non-thesis students, allowing students to take both introductory and advanced courses in more of their areas of interest. 3) New courses are created as needed to ensure coverage of emerging technologies.

V. SUPPORTING DOCUMENTS

Additional documentation, when provided, is stored in the internal Academic Program Assessment of Student Learning SharePoint site.