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On Testing of Individual Bioequivalence

Weizhen WANG

Individual bioequivalence has received much attention in the recent literature. One wants to determine whether it is suitable for a
given individual to switch formulations from a reference drug to a test drug. Some researchers have argued that the formulation
means, subject-by-formulation interaction, and within-subject variances should be included in a single measurement of inequiva-
lence, and due to the complexity of the hypotheses there is a need to use a 2 x 3 or even higher-order crossover design for studies
of this type. In this article exact level-« tests are first provided under normality assumptions, and a 2 x 3 crossover design is shown
to be sufficient for assessing individual bioequivalence. Some simulations for the proposed test and two examples are presented.

KEY WORDS: Crossover design; Noncentral ¢ distribution; Power; Reparametrization.

1. INTRODUCTION

Basically, there are two general concepts for bioequiva-
lence: population bioequivalence and individual bioequiva-
lence. As the term implies, population bioequivalence em-
phasizes whether two drugs have similar effects on the
entire population of patients. There are two aspects of pop-
ulation bioequivalence: average bioequivalence, which is
recommended by the U.S. Food and Drug Administration
(FDA), and variance bioequivalence. Anderson and Hauck
(1983), Brown, Hwang, and Munk (1997), and Schuirmann
(1987) proposed several testing procedures to address the
first problem. For the variance problem, two testing pro-
cedures have been provided by Liu and Chow (1992) and
Wang (1997a). Wang (1997a) also pointed out that bioequiv-
alences in mean and in intrasubject variability are indeed
one problem.

However, physicians and patients may have more inter-
est in whether the two drugs have similar effects on each
individual. More precisely, for a given individual, is it suit-
able to switch to the generic drug from the brand name
drug? Anderson and Hauck (1990), in their very influential
work, first identified this problem and proposed the concept
of individual bioequivalence. They assumed the following
simplified 2 x 2 crossover design without the period effects:

Yir = pr + by + &7
and
Yir = pr + bir + €ir, (1)

where Y;; is the response of the ith subject for the jth for-
mulation, where j = R (reference formulation) or T (test
formulation), ¢ = 1,2, ..., n; u; is the population average of
the jth formulation; b;; is the mean deviation from the pop-
ulation average of a given individual; and ¢;; is the (within-
subject) random error in observing Y;;. It is assumed that
b;; and ¢;; are mutually independent. Define

prr = Pr(|pr + bir — pr — bir| <), )

Weizhen Wang is Assistant Professor, Department of Mathematics and
Statistics, Wright State University, Dayton, OH 45435 (E-mail: wwang @
math.wright.edu). The author gratefully acknowledges two referees, the
associate editor, and editor for their helpful comments and suggestions
that substantially improved the article.

where r is a predetermined constant. Consider the hypothe-
ses

Hy: prr <po Vvs Ha: prr > po, (3)

where pg is a constant larger than 1/2. If the null hypothesis
is rejected on more than 100py% patients, then the patient
can switch to the generic drug, and individual bioequiva-
lence is established. Anderson and Hauck (1990) also pro-
vided a nonparametric testing procedure for (3) using a bi-
nomial distribution. This procedure is not always valid, and
the size of the test may be much larger than the test level.
A mild condition that guarantees the validity of their test
was given by Hwang and Wang (1997). Under the normal
assumptions on Y;;, much more powerful tests than Ander-
son and Hauck’s for (3) have been given by Wang (1995)
and Wang and Hwang (1997).

One shortcoming of individual bioequivalence hypothe-
ses (3) is that the within-subject variability has not been
taken into account. Noticing this, Schall and Luus (1993)
and Schall (1995) suggested using a 2 x 3 crossover design
in which the test formulation and the reference formulation
are administrated on each subject once and twice,

Yir = pr + bir + €57,

Yir = pr + bir + &R,

and
Y/r = ur +bir + €ir, )

so that one can compare the difference between two formu-
lations with the variation of the reference formulation on
each subject. Let 02 = var(e;r), 0% = var(e;g) = var(ep),
and 0% = var(b;r — b;g). For mathematical convenience,
Schall and Luus (1993) proposed a moment-based approach
to assess individual bioequivalence comparing the second
moments of Y;r — Y;z and of Y/, — Yig that is equal to
20%. More precisely, consider the hypotheses

Ho: E|Yir — Yip|* > 2y,,0% versus

Hyu: EYir — Yig|? < 2Ymo%, (5)
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where ~,,, is a prespecified constant. Individual bioequiva-
lence is established if we successfully reject the null hy-
pothesis. More generally, the FDA (U.S. Food and Drug
Administration 1997) draft guidance on bioequivalence sug-
gests considering

02 + c10% + co(02 — 0%)
H()I 5
max{c%,a}

> versus

02+ c10% + o0k — 0%)

Hyu: max{o, a) <7, (6)

where § = pr—pg and ¢y, co, v1, and a are nonnegative con-
stants (see also Anderson and Hauck 1996). Schall and Luus
(1993) extended the idea of Anderson and Hauck (1990)
and proposed another type of individual bioequivalence us-
ing probability instead of moment; see (20). It is clear that
(6) reduces to (5) if we choose ¢ = 0 and choose ¢; and
~1 appropriately. The new types of individual bioequiva-
lence hypotheses in both (5) and (6) have better interpreta-
tion than (3), because variation among the responses of the
reference formulation has been taken into account. These
follow a so-called aggregate approach (see Anderson and
Hauck 1996; Chen 1997), because univariate criteria are
used. Liu and Chow (1996) used a disaggregate approach in
which three sets of hypotheses with regard to three param-
eters 02 /0%, 0%, and 6 are considered simultaneously (see
also Liu 1995). However, it would be difficult to declare in-
dividual bioequivalence if using the disaggregate approach.
Thus in this article I focus on the aggregate approaches.

Example 1. Some real datasets from bioequivalence
studies are available on the FDA web site: http://www.fda.
gov/cder/bioequivdata/index.htm.

Monoamine oxidase (MAQO) inhibitor (drug 14), a generic
drug to treat depression, and is compared with the reference
drug using the following 2 x 4 crossover design:

Period
I I I iv
Sequencel T R R T

Sequence2 R T T R

which is similar to that recommended by the FDA (U.S.
Food and Drug Administration 1997). The pharmacokinetic
parameters, AUCy_;, AUCH_ oo, and Ciax (see U.S. Food
and Drug Administration 1997 for definitions), are recorded
from 38 subjects on 4 components A, B, C, and D of the
MAO inhibitor. The test formulation and the reference for-
mulation are both administered twice to each subject so
that the subject-by-formulation interaction and the within-
subject variation of the reference formulation can be de-
tected. However, as I show later, such a 2 x 4 design is not
necessary to achieve this. The goal here is to establish the
individual bioequivalence for the MAO inhibitor by per-
forming data analysis on one or several pharmacokinetic
parameters.
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Now, two questions arise:

1. Is the 2 x 3 crossover design (4) sufficient to assess
individual bioequivalence?
2. How does one construct tests for (5)?

In the case of no subject-by-formulation interaction (i.e.,
0% = 0), Wang (1997b) showed that the 2 x 2 crossover
design (1) is sufficient for assessing bioequivalence (5). He
considered a general class of testing problems that includes
(5) for 0%, = 0 and provided exact a-level tests. However,
the subject-by-formulation interaction cannot be ignored in
general. Here I will show that the 2 x 3 crossover design (4)
is sufficient to assess bioequivalence (5) under the following
normality assumptions:

iid

bir —bir ~ N(0,0%), i

2

EiTr ~ N(O,UT),
,iid
€ir ™

E;JR’
N(0,0%)

with the b’s independent of the €’s. So far, there is no solid
statistical testing procedure for (5) other than bootstrap re-
sults (see Schall 1995) when ¢%, # 0. In a bioequivalence
study the sample size is quite limited, typically from 20 to
30. Exact testing procedures based on a finite sample would
certainly be desirable. In this article I derive exact level-a
tests for (5) using an approach similar to that specified in
an earlier work (Wang 1997b).

Section 2 contains all preliminaries. Section 3 constructs
two tests for (5) and presents the numerical calculations.
Section 4 discusses two real examples, including Example
1, and gives a detailed step-by-step description of how to
implement the proposed test. Section 5 applies the method
developed in Section 3 to the other types of individual
bioequivalence hypotheses, including (6) and (20). The Ap-
pendix provides all proofs.

2. PRELIMINARIES

I first introduce a reparametrization:

0 = pr — Lr, 0 = 0% + 0% +0%/2, B=o0%/c>

Then by straightforward calculation, (5) can be written as

0

g

Hy: > H,,(B8) versus

Hy:

6
2 <), @
g
where H,,(8) = /(2vm —.5)3—1 and 8 € (1/(2vm —
.5), 2], so that H 4 is not empty. To obtain test statistics, the
following data transformations are needed:

Y+
Vi=Y - TRTYR gy Y, ®
for : = 1,...,n. It is clear that V; and U, are independent
and that
V, 5 N@0,0?),  UN N(©0,2802). )

To make inferences about /o, let § be the sample mean
of the sample {V3, ..., V,} and let 52 be its sample variance.
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Because the V;’s are iid N(, 02), we obtain

where t,,_1(y/n0/c) denotes a random variable that has a
noncentral ¢ distribution with n — 1 df and a noncentrality
parameter, v/nf/o0. To make inferences about 3, I introduce

(Xiy U2)/(2n)

o"-2

B = ; (10)
then 3/8 follows an F distribution with n and n — 1 df.
These two statistics, § /6 and ﬁ, serve as the test statistics.
It is clear that any test of (7) based on these two statistics
is invariant under the group of scale change. The parameter
space now is Q,,, = {(0/0,5): B € (1/(2vm—.5), 2]}, which
is a horizontal strip in R2. Figure 1 gives the parameter
space Q.,, Hy and H4 of (7), when v, = 1.5.

Which kind of rejection region should the desired test
have? The form of hypotheses (7) suggests the following.

Lemma 1. For any fixed value of g, the power function,
as a function of 6/c, of a test with the rejection region

g/vn

where T is any nonnegative function, is unimodal and sym-
metric about 0.

Therefore, for any given nonnegative function 7', one
-can check whether it defines a level-a test by evalu-
ating its type I error at the boundary of Hy,0Hy =

{(v/(2ym —.5)8—-1,8): B € (1/(27m — .5),2]}, which is

part of parabolic curve. If the type I errors are all no larger

< T(B), (11)

o
N

Journal of the American Statistical Association, September 1999

than «, then the function T defines a level-a test; if the
supremum of the type I error is equal to «, then T' defines
a size-a test. With the help of a modern computer, the nu-
merical evaluation can easily be done. Finally, we provide
guidance on how to choose the function 7'

Lemma 2. Consider testing the hypotheses (7) for any
fixed value of (. There is a uniformly most powerful invari-
ant level-« test based on the V;’s for (7) with the rejection
region

~

0
&/_\/ﬁ < To(ﬁ)a (12)
where Tp(0) is determined by the equation
Pr([tn—1(vnHm ()| < To(8)) = . (13)

This lemma is not realistic, because § is an unknown
parameter. However, the function 7' should be somewhat
related to Ty.

3. TESTS OF INDIVIDUAL BIOEQUIVALENCE

A naive choice of T is T(3) = Ty(5). The numerical
calculations show that the type I error if 7" is chosen in
this way is much larger than the test level, which indicates
that Ty(8) overestimates Ty(8) systematically. That Ty is
an increasing function is trivial because H,, is increasing.
Therefore, To(3) can be underestimated by underestimating

beta
1.2

0.4

theta/sigma

Figure 1.
the curve.

The Hypothesis Spaces of (7) With ym = 1.5. Qm is the horizontal strip .4 < 3 < 2, the solid parabolic curve is OHp, and Hy is inside
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B. I define a rejection region

0 if k3 < 1/(2vm — .5)
To(2) if kB> 2

To(kB) otherwise,

~

0
NG (14

<T(B) =

where k is a positive constant to be determined. The ratio-
nale behind the definition is that 3 is underestimated by k3.
Because H, is empty when 8 < 1/(2v,, — .5), Hp cannot
be rejected when k4 is small. Similarly, when 3 is close to
2, one is basically testing |0/c| > Hp,(2). It is clear that a
larger k yields a more powerful test. Therefore, the largest &
is chosen so that the test has level «. To do so, partition the
interval [1/(2ym — .5),2] as Bo = 1/(2Ym — .5),...,08, =2
with equal increment. Simulate the type I error of the test
(14) at each of w; = (v/(2ym — .5)B; — 1,05;) at OHy for
i = 0,...,v for an initial value of k. Throughout this ar-
ticle, each power or type I error is based on 100,000 sim-
ulations coded in Gauss software. If the maximum type I
error is less than the test level o, then choose a larger & for
the next round of simulations; otherwise, choose a smaller
value for k. For example, if v, = 1.5,n = 24 and a = .05,
choose v = 50, which makes the points §; dense enough
in the interval [.4, 2]. I simulate 51 type I errors for each
value of k£ and keep track of the maximum type I error (i.e.,
the size of the test). I choose k = .618 at last, which gives
the maximum type I error .0497 attained at point (0, .4) on
the boundary of Hy. Figure 2 shows the rejection region of
this test, the area between two solid curves. To simulate the
power or the type I error of (14), T use

~

0

f(6/0,8) < P ( NG (15)

<T@0

883
- (el b)) 00

where Z is N(0,1),x2 follows a chi-squared distribution
with u df for w = n,n — 1, and they are all independent.

It is important that ~,, be chosen neither too small nor
too large. If v, is no larger than 1 (i.e., the second moment
of Y;r — Y;g is controlled to be at most that of Y/, — Y;r),
then it is very difficult to have a reasonable power for estab-
lishing individual bioequivalence. On the other hand, if v,
is too large, then some non—individually bioequivalent drug
may have the chance to establish bioequivalence. I recom-
mend that +,, be chosen from the interval [1.5, 2]. Table
1 provides the values of the constant k, the size and the
maximum power of (14) when v, = 1.5 and the sample
size n is 18-38, typical numbers of subjects in bioequiv-
alence studies. Numerical calculations show that the size
and the maximum power of (14) are always achieved at
points (0/0,3) = (0,.4) and (6/c,8) = (0,2). In terms of
the original parameters, (6/0,8) = (0,.4) if pr = pr and
0% + 02 = 20%, and (8/0,8) = (0,2) if ur = pr and
0% + 02 =0.

I now provide a detailed simulation study on the power
function and the type I error of (14) when n = 24. Here the
test level « is chosen to be .05. If ~,, = 1.5, then 0Hy =
{(8/0,B): B € (4,2],0/c = /253 —1}. Table 2 presents
the type I error at OHy and the power at /0 = 0,.4 and
1 when 8 changes from .4 to 2 with 10 equal increments.
It can be seen that all type I errors are less than the test
level .05. By Lemma 1, the test is known to be a .05-level
test if its type I error at Hp is at most .05. Notice that the
type I error decreases when [ increases and the type I error
is only .0004 when 8 = 2, so it is possible to uniformly
improve the power of (14) by enlarging its rejection region,

@
)

betahat
1.2 1.6 2.0 2.4 2.8 3.2

0.8

0.4

-8 -6 -4 -2

0 2 4 6 8

thetahat/(sigmahat/sqrt(n))

Figure 2. The Rejection Regions of Tests (14) and (17) When vm = 1.5, n = 24, and a = .05. The region inside the solid curve is for (14). The

union of this region and two dashed regions is for (17).
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Table 1. The Constant k, Size, and Maximum Power of the Test (14)
When ~vm = 1.5, the Level o = .05, and the
Number of Subjects n Varies

Journal of the American Statistical Association, September 1999

Table 2. The Type | Error at the Boundary of Hyp and the Power at
0/c = 1, .4, and 1 for the Test (14) When o = .05, n = 24,
Ym = 1.5,and 8= .4+ .16i fori = 0, ..., 10

n k Size Maximum power i (02 +02)o%  Typeleror 6/o=1 6/5=.04 06/=0
18 .586 .0500 .9487 0 2 .0499 4e-05 .0151 .0500
20 597 .0499 .9636 1 1.29 .0213 .0008 .0785 1955
22 .607 .0497 9754 2 .89 .0133 .0052 1997 .3967
24 .618 .0497 .9840 3 .64 .0090 .0196 .3531 .5859
26 626 .0497 .9890 4 .46 .0063 .0494 5047 7305
28 .633 .0496 .9929 5 .33 .0043 .0987 .6360 .8298
30 .641 .0496 9952 6 .24 .0029 1647 7394 .8938
32 .648 .0499 9970 7 .16 .0018 2444 .8169 .9342
34 .655 .0500 .9980 8 10 .0011 .3293 .8722 .9588
36 .660 .0499 .9986 9 .04 .0007 4154 9115 .9740
38 .666 .0500 19992 10 0 .0004 .4968 .9382 .9838

while still controlling the size of the test. To obtain a power
of .8, 8 should be at least 1.2 (i = 5, in Table 2); that is,
(0% + 02)/0% < 1/3, when ¢ = 0. It is no surprise that
small subject-by-formulation interaction and within-subject
variability are needed for the test formulation to obtain a
large power. In fact, the reference formulation has a power
of only .328 to establish individual bioequivalence to itself.
For such a case, (0%, + 02)/0% = 1. Table 3 presents a
similar numerical study for v,, = 2 with k = .618. Again,
the type I error is controlled to be at most .05. A power
larger than .8 can be obtained only when § > .8; that is,
(0% 4+ 02) /0% < .T5.

I close this section with an attempt to improve (14) in
power uniformly. Notice that the type I error of (14) is
less than the test level, especially when g is large, so the
rejection region of (14) may be enlarged at large 3. Define

0 if k3 < 1/(2ym — .5)
To(2) if kB > ky
To (k,@) otherwise,

~

0

5777 < T (B) = (17)

where the constant % is the one in (14) and k;, less than 2,
is a new constant to be determined. It is clear that the new
test is uniformly more powerful than (14) if its size is still
a, because it has a larger rejection region. When +,, = 1.5
and n = 24, numerical calculations show that k; = 1.09.
[See Fig. 2 for the rejection region of the new test, which
equals the region of (14) plus two dashed areas.] Table 4
presents the simulations of the type I error and power of
(17). The test level is still controlled at .05, and the power
increments over (14) are substantial when 6/c is close to
1. In the application, however, one may be cautious about
using this test, because the boundary of the rejection region
is not continuous at § = k;/k. It is of interest to obtain a
more powerful test with a smooth rejection region.

4. EXAMPLES

Here T apply (14) for individual bioequivalence (5) with
~vm = 1.5 on two examples. The test level « here is .05.

Example i (Continued). From the discussion in the pre-
vious section, there is no need to use a 2 x 4 crossover
design. One only needs a 2 x 3 crossover design in which

the test and reference formulations are administrated on
each subject once and twice. For the component C of the
MAQO inhibitor, Cp,,x is obtained on two sequences: TRRT
and RTTR. Therefore, for the purpose of illustration, I ig-
nore the observations in the fourth period of sequence 1
and the third period of sequence 2 and pretend to have a
2 x 3 crossover design; Table 5 redisplays the data. Note
that subjects 14 and 15 are not given. Thus the sample size
is n = 38. As pointed out by a referee, in practice most
studies are conducted as four-period designs. For such de-
signs, a solution is to use the average of two responses
of test formulation instead of a single response. Somewhat
surprisingly, more parameters and more test statistics are
involved, and the hypothesis spaces are regions in R® in-
stead of R2. This concept is beyond the scope of this article,
even though the idea of reparameterization can still be ap-
plied, and would be of interest for future research. Assume
a three-period design; the analyses on Cy,ax proceeds as
follows:

* Step 1. Obtain U; and V; on each subject using the
transformations (8); for example, V3 = 12.247 —
(11.574 + 10.988)/2 and Us = 11.574 — 10.988. The
results are given in Table 5.

+ Step 2. Obtain the sample mean § = —.607 and the
sample standard deviation & = 1.453 of V;’s and the
sum of squares of U;’s, > U2 = 289.231. Then

é 7‘1—1 Uz2 2n
(Zz—&# — 1.803.

&/vn
Table 3. The Type | Error at the Boundary of Hp and the Power at

0/c = 0, .4, and 1 for the Test (14) When o = .05, n = 24, vy = 2,
and B = 1/3.5 + (2 — 1/3.5)i/10fori = 0, ..., 10

=-2573, fB=

i (03 + 02)0%  Typeleror Oo=1 0lo=.04 6/6=0
0 3 .0500 5e-05 .0152 .0499
1 1.69 .0164 .0023 .1333 .2940
2 1.09 .0092 .0196 .3525 .5851
3 .75 .0057 .0731 5737 .7842
4 .53 .0040 .1686 .7389 .8933
5 .38 .0026 .2938 .8467 .9479
6 .26 .0016 4266 9110 .9743
7 A7 .0010 5521 .9487 .9870
8 .10 .0007 .6583 .9701 .9933
9 .05 .0003 .7440 .9825 .9965
10 0 .0001 .8100 .9896 .9981
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Table 4. The Type | Error at the Boundary of Hy and the Power at
0/0 = 0, .4, and 1 for the Test (17) When o = .05, n = 24,
Ym = 1.5,and 3= .4+ .16i fori = 0, ..., 10

Example 2.

i (0% +02)o% Typelerror Ofo=1 6flo=.04 0b=0
0 3 .0499 .0001 .0152 .0500
1 1.69 .0228 .0023 .0783 .1957
2 1.09 .0221 .0142 .2012 .3965
3 75 .0329 .0454 .3548 .5853
4 53 .0443 .1024 .5069 7295
5 .38 .0489 1814 .6389 .8295
6 .26 .0447 .2763 7415 .8931
7 A7 .0353 .3753 .8183 .9342
8 10 .0249 4700 .8735 .9589
9 .05 .0156 .5586 9125 9744
10 0 .0095 .6336 .9392 9839
+ Step 3. Define
0 ifk< 4

kB if kB> 2

* Step 4. If z = 0, then fail to reject Hp; otherwise,
solve Ty(x) from

F(To(x)) = F(=To(2)) =

where F' is the cdf of the noncentral ¢ distribution
with n — 1 = 37 df and noncentrality parameter
/38(2.5z — 1). Here Ty(z) = 6.677.

* Step 5. Individual bioequivalence is declared at the
.05 level if and only if |0/6/+/n| is less than Tp(z).
Hence I declare individual bioequivalence based on

this dataset.

RTTR. Following steps 1 and 2,

The antihypertensive patch is a generic
drug used to treat hypertension. The same 2 x 4 crossover
experiment as in Example 1 is conducted on n = 37 sub-
jects, and the dataset is available on the same web site,
labeled as drug 17. I analyze the AUCy_; of component
A. Again, I ignore the observations in the fourth period of
the sequence TRRT and the third period of the sequence

2 otherwise
N n
g — _510 I@ _ (e U?)/(2n) _
where k = .666 from Table 1. Hence z = 1.200. 5/vn Y 52
Table 5. Cmax for Test and Reference Formulations
Period

Sequence Subject / 1 I or IV V; U;
TRR 3 12.247 10.988 11.574 .966 .586
TRR 6 11.726 14.756 15.277 —3.291 521
TRR 8 10.491 14.719 10.698 —2.218 —4.021
TRR 9 8.501 9.647 9.574 —1.110 —.073
TRR 10 9.490 10.658 9.833 —.756 —.825
TRR 11 11.246 12.900 12.816 —1.612 —.084
TRR 12 10.653 12.058 12.567 —1.660 .509
TRR 13 12.606 12.542 12.030 .320 —.512
TRR 17 10.977 13.961 10.386 —1.197 —3.575
TRR 18 14.115 14.691 13.009 .265 —1.682
TRR 19 11.857 13.688 11.862 —.918 —1.826
TRR 21 10.613 10.612 10.249 .183 —.363
TRR 24 11.532 11.526 11.700 —.081 174
TRR 26 12.383 13.904 12.283 —.711 —1.621
TRR 29 10.474 10.662 10.192 .047 —.470
TRR 32 12.385 12.092 8.927 1.876 —3.165
TRR 34 11.776 13.936 12.205 —1.295 —1.731
TRR 37 10.927 12.298 10.922 —.683 —1.376
RTR 1 11.745 11.120 12.923 —1.214 1.178
RTR 2 12.949 11.389 12.054 —1.113 —.895
RTR 4 14.646 13.177 12.365 —.329 —2.281
RTR 5 14.389 12.710 13.548 —1.259 —.841
RTR 7 12.956 12.062 12.436 —.634 —.520
RTR 16 14.859 14.372 12.223 .831 —2.636
RTR 20 10.272 10.280 12.043 —.878 1.771
RTR 22 9.479 10.494 10.671 419 1.192
RTR 23 11.841 11.823 11.376 .215 —.465
RTR 25 10.899 10.981 10.906 .079 .007
RTR 27 12.671 12.622 13.320 —.374 .649
RTR 28 14.310 12.266 10.227 —.003 —4.083
RTR 30 12.288 10.040 10.669 —1.439 —1.619
RTR 31 11.957 11.439 10.829 .046 —1.128
RTR 33 9.755 11.365 11.087 .944 1.332
RTR 35 10.684 11.526 10.635 .867 —.049
RTR 36 10.228 11.235 11.213 515 .985
RTR 38 9.331 8.049 10.764 —1.999 1.433
RTR 39 28.235 14.757 14.597 —6.659 —13.638
RTR 40 13.288 14.886 14.869 .8075 1.581
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Now z = k,@ = .479, where k = .662. Solving the equation
in step 4, Tp(.479) = 1.055, and the individual bioequiva-
lence is established.

5. OTHER CONSIDERATIONS

The method of constructing the test (14) for (7) can be
easily applied to the following hypotheses:

0

g

Hy: versus

> H(p) Hy:

Q<wa(w)
g
where H is a given nonnegative nondecreasing function,
with the test statistics /n8/6 and (. Equation (13) can be
solved with H,, replaced by H, then a new T" can be defined
as in (14) with an appropriate choice of k.

Return to the hypotheses (6). The parameters %, and 0%
are not identifiable based on (8). Therefore, we are not able
to deal with the cases of ¢; # co. But when ¢; = ¢; = ¢
and a = 0, then (6) can be written as

0

(2

Hy: versus H4:

< Hy(f), (19)

U '

> Hy(P)

where Hy(f) = /(m+1.5¢)—c for B € (¢/(m +

1.5¢), 2]. Hence a test can be derived as shown in Section 3.
The same test is also a valid test for (6) with a > 0. How-
ever, this test may be conservative when used for a¢ > 0.
This is because the null hypothesis of (6) for a > 0 is in-
cluded in that for a = 0. The hypotheses (6) with a = 0
are recommended, because they are invariant under scale
changes and also give higher credits to the test formulation
with a small variability than the hypotheses with a > 0.
There is another application for the hypotheses (18).
Schall (1995) proposed an individual bioequivalence based
on probability that generalizes (2). He considered the fol-
lowing:
versus (20)

Hy: prrr <po Hy: prrr > po,

where

prrr = Pr(|Yir — Yir| < %V20g), (21)
and v, > ® *(py/2 + 1/2)/v/2 and p, are positive con-
stants. Here @ is the cdf of N(0, 1). If the null hypothesis
is rejected, then individual bioequivalence is declared. For
example, if v, = 1.96 and p, = .8, then on more than
80% subjects, about 95% of the differences between the re-
sponses from the test and reference formulations are within
1.96 times v/20g, the standard deviation of the difference
between two responses of the reference formulation. All
one needs to do is write (20) in the form of (18).

Lemma 3. The hypotheses (20) can be written as

0

g

Hy: versus Hy:

ﬂ<HMm,@»

(2

> Hy(P)
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where Hp, is determined by

& ’Ypm - Hp(/g)
V1+p56/2

NES
Here @ is the cdf of N(0, 1) and S € (8o, 1], where

__2[07 (po/2+1/2))?
4y — [@1(po/2 + 1/2)]*

Bo

Moreover, H, is a nondecreasing function.

In summary, a method of constructing tests for a general
class of testing problems (18), including individual bioe-
quivalence based on moment or probability, has been pro-
posed. Higher-order crossover designs (more than 2 x 3)
are not necessary for assessing bioequivalence. The simu-
lation studies show that the proposed tests are, at least in a
practical sense, exact a-level tests. Uniform improvement
in power on the proposed tests is possible and of interest
for future research.

APPENDIX: PROOFS

Proof of Lemma 1

Let x2_; = (n — 1)62 /0> For given x2_1,0/5/+/n is inde-
pendent of B, and the conditional distribution of 3 depends on 3
only. Therefore, the conditional probability

of

0

&/vn

<ﬂmuLQ

=E/ o(z) dz,
{lz46/0/V/nl<xn-1T(B)/vV/n—1}

where ¢ is the pdf of N(0, 1), is unimodal and symmetric about 0
as a function of #/c, as is the unconditional probability

Pr ( T(ﬁ)) .

Proof of Lemma 2

0

5/vn

It is well known that the noncentral ¢ distribution family is
strictly totally positive of order 3 to noncentrality parameter 6/c
(see Lehmann 1986). Then (12) defines a uniformly most powerful
test for (7) based on the statistic §/5 by problem 30 of Lehmann
(1986, p. 120) for a fixed 4. Because 6/ is maximal invariant with
respect to the group of scale change, (12) defines a uniformly most
powerful invariant test.

Proof of Lemma 3

Because Yir — Y;g follows a normal distribution N(6, (1 +

B/2)0®),

prrr = ® ’Ypm_e/a _® _’Ypm+‘9/‘7 ]
1+8/2 1+4/2

It is clear that prr; is decreasing in |0/o| for any fixed 8. Thus Hy
is determined by (5). If the alternative space H 4 is not empty, then
B > Bo. To show that H, is nondecreasing, it only must be shown
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that prrr is increasing in §. Note that prg; is an integration of
a standard normal density function on an interval with a radius

vpv/2B8/+/1+ B/2 and a center at —0/(c+/1 + B/2). The radius
increases and the center moves toward 0 as 3 gets large. Therefore,
for a fixed /0, the probability prrr is increasing in 3, and the
proof is complete.

[Received October 1997. Revised March 1999.]
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