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SUMMARY

Although the U.S. Food and Drug Administration (FDA, 1992) recommends testing
bioequivalence of individual pharmacokinetic parameters one at a time, it seems reason-
able and interesting to conduct a test simultaneously for all the parameters. In this paper,
we discuss several ways to construct such tests. It is shown that the confidence set approach
leads to a test which can be uniformly improved by the intersection of Schuirmann’s two
one-sided tests procedure. The latter test can further be improved upon noticeably by
using the one-dimensional unbiased test of Brown, Hwang & Munk (1997). Numerical
calculations of powers are given to support this claim.

Some key words: Confidence set; Intersection-union method; Likelihood-ratio test.

1. INTRODUCTION

In bioequivalence studies, one typically is interested in demonstrating that a new drug
is similar in efficacy to a brand-name drug. The FDA (1992) recommends a 2 x 2 crossover
design. Typically 24 subjects are randomly divided into two groups. One group will be
given the brand-name drug and after a wash-out period the new drug. The other group
is similarly treated except that the order of drugs is reversed. The blood samples are then
collected from each subject at various times and a blood concentration curve against time
of a certain ingredient is obtained.

The three most typical characteristics of the blood concentration curve considered are
the area under the concentration curve, AUC, the maximum concentration, C,,,, and the
time to reach the maximum concentration, T,,,,. The FDA (1992) then recommends that
one applies Schuirmann’s (1987) two one-sided tests procedure on one of the above charac-
teristics to test the hypotheses

H,:|0| = A versus Hy:|0] <A.
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Here 0 = 0 — 0g =log(ur/ug), where log is the natural logarithm function, and 6, and
O represent respectively the means of the characteristic in a log scale corresponding to
the new treatment and the reference, i.e. brand-name, treatment. The FDA’s recommended
cut-off number A is log(1-25) so that u, and ug stay within 80% of each other. If H, is
rejected, then bioequivalence is declared.

Schuirmann’s (1987) test, however, is one-dimensional. It would seem reasonable and
interesting to consider simultaneously the test involving all relevant characteristics. In this
paper we shall consider testing the hypotheses

H,: max (09| > A versus H,: max [09| <A, (1-1)

1<i<p 1<i<p
instead. Here the 0®’s are, for example when p = 3, the differences of the means of the
area under the concentration curve, C,,,, and T, ,,, usually in logarithmic scales, corre-
sponding to the treatment and the reference drugs. Statisticians have proposed various
criteria in the area of multiparameter bioequivalence testing. Some have even proposed
to test separately. Our hypotheses (1-1) can be generalised to different A’s as in (1-5) and
allow the least interaction among the parameters. If H,, is rejected, it ensures that each 0°
is bounded in absolute value by A or A,.
Now consider the canonical form

X ~N,0,%), £~W(Z,d), (1-2)

with the unknown parameters 0 = (0%, ..., 0®Y and £ = (0;;),x» and X and £ are inde-
pendent. Here W(Z, d) denotes a Wishart distribution with d degree of freedom (Anderson,
1984, p. 249) and p is the number of characteristics. This canonical form can be applied
to a general linear model including the crossover design below with period effects and
subject effects. Specifically, consider a standard 2 x 2 crossover design that compares a
test drug formulation with a reference drug formulation, as in Chow & Liu (1992, p. 34):

for Sequence 1

Yire=#u+S8u+Fr+Pi+eg, Yri=p+Su+Fr+P+ers, (1-3a)
and for Sequence 2

Yiro=u+Sy+Fr+Pi+ers, Yra=p+Sp+Fr+ P+ éirs, (1-3b)

where Y, a p-dimensional random vector, is the response of the ith subject in the kth sequ-
ence for the jth formulation, in which j=R, T, k=1,2and i=1,2,..., n; uis the overall
mean vector; F; is the fixed effect for the jth formulation with F + Fy =0; P; and P, are
the fixed period effects with P; + P, =0; S;, is the random subject effect; ¢;; is the intra-
subject random error in observing Y. It is also assumed that, for i=1,...,n; and k=
1,2, &1« — &:ri are independently and identically distributed normal random vectors with
mean zero and common unknown p x p covariance matrix X,. There are examples in
which a multinormal model appears reasonable; see the Cornell University 1997 master’s
thesis by Xuan Ma. Let 0 = Fr — Fg, Vi, = (Yip, — Yig,)/2 for all i and k and V, =Y.V, /n,.
Then
2 R 1 1 2 n _ _
X= Z Vi, &= <_ + _> z V= Vi)V = Vo) (1-4)
k=1 Ry Ny/ p=1i=1
satisfy (1-2) with £ =(1/n; + 1/n,)Zy/4 and d =n, +n, — 2.
Now return to model (1-2). In this paper, we shall derive tests for (1-1). Note that our
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result applies to the hypotheses in which the equivalence limits are not equal for different
characteristics. That is, consider

Hy:|09| = A; for some i (1-5a)
versus
H,: |09 <A, for all i, (1:5b)

where the A;’s, the threshold constants, may be different for different i. To see this, let 4
be a p x p diagonal matrix with ith element A/A,, and define X,.,, = AX and £, = AZA4".
Then (1-5) reduces to (1-1) with X,.,, and £,,,, as the test statistics.

We review some results for p = 1 first. Schuirmann (1987) provided a size-« test for (1-1)
by using the intersection-union method with the rejection region

|1 X| <A —ty(@)(E/d)%, (1-6)

where t,(x) is the upper a quantile of Student’s t-distribution with d degrees of freedom.
The size of a test is defined as the supremum of the type I error over the null hypothesis
space. In contrast, a test is said to have level « if its size is no greater than o. Brown et al.
(1997) obtained a size-x unbiased test with the rejection region

| X| < B(£%), (17)

where B is some positive function which is never smaller than the right-hand side of (1-6).
Therefore, (1-7), the test of Brown et al. (1997), uniformly improves Schuirmann’s test
(1-6) in power. This fact will be used in § 3.

For the multivariate case p > 1, Westlake (1988), Hauck et al. (1995) and a University
of the Orange Free State technical report by R. Schall, P. C. N. Groenewald, L. A. Potgieter
and H. G. Luus considered tests which reject H, if and only if, for each component,
applying the two one-sided tests leads to the rejection of the nonequivalence hypothesis;

‘ie. reject Hy in (1-1) if

|XP|<A—C(Ey/d)} (1<i<p) (18)

for some constant C, where X is the ith component of X and £, is the ith diagonal
element of £. In particular, this test is called the repeated univariate test, based on
Decision 2, in the report by Schall et al. Westlake (1988) and Hauck et al. (1995) rec-
ommended different choices of C and make a wrong suggestion or conjecture about the
size of the test.

Is the test (1-8) reasonable? If so, what is the appropriate choice of C that would lead
to the correct size? Is it possible to do better than (1-:8)? These are the questions that we
will address in this paper.

We try various approaches to derive tests. In § 2, first we show that the intersection-
union method leads to (1-8). Secondly, the likelihood ratio approach is shown also to
lead to (1-8). The result seems interesting even for p = 1, since this concludes that the two
one-sided tests procedure can be justified by the likelihood ratio approach. As for the
multivariate case, such a simple expression is not possible if we test again H, as the null
hypothesis. Thirdly, we take a confidence set approach which also leads to (1-8) with a
larger choice of C and then yields a less powerful test than the intersection-union test.
The latter one, however, can be improved uniformly as shown in § 3. By adapting the one-
dimensional test of Brown et al. (1997), we can construct a multivariate test uniformly
improving upon the intersection-union test (1-8). The improvement in power may be as
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big as 0-11. As an interesting fact, the tests in §§ 2 and 3 are also valid as long as each
characteristic follows a univariate normal distribution; they do not have to have a jointly
multivariate normal distribution. Numerical studies are reported in § 4.

2. INTERSECTION-UNION TEST

Schuirmann (1987) proposed test (1-6) by using an approach called the intersection-
union method in Berger (1982); see also Casella & Berger (1990, p. 356). In this section
we will generalise Schuirmann’s test to p > 1.

Let us consider p sets of hypotheses,

Hy;: 109> A versus Hy;: |09 <A, (2-1)
fori=1,...,p. For each set of hypotheses, one has the size-a rejection region
Ri={|XP < A—ty()(Es/d)F}

corresponding to the Schuirmann test (1-:6). The rejection region
p R .
RI = ﬂ Ri = {IX(l)l < A - td((x)(zii/d)i, fOI' all i} (2'2)
i=1

defines a level-a test for (1-1) since Hy= M-, H, . This method is called intersection-
union since the rejection region is the intersection of several rejection regions and the null
hypothesis is the union of several null hypotheses. The proof of the following result,
established in Berger & Hsu (1996), is omitted.

THEOREM 1. Consider the testing problem (1-1) under model (1-2). Then the test R for
(1-1) has size o.

It is worth pointing out that the intersection-union method depends on the marginal
distributions of each X only. As long as R, defines a level- test for (2-1), which is true
if each characteristic is normally distributed, the intersection MN?_; R; then defines a level-

o test for (1-1). Therefore, we do not need to assume in Theorem 1 above that X®’s are
jointly normal.

Secondly, note that the test (2-2) is basically a likelihood ratio test. Indeed, a direct
calculation shows that the likelihood ratio A(X, £) equals

supy, L0, %; X, %) 1 @+2
supgum, L0, Z; X, Z) |1 +infye g, (X —0YS7HX —0) ’

MX,2)=

where L is the likelihood function for model (1-2). Using this, we conclude the following.
Result 1. For 0 <K <1, A(X, £) <K if and only if
XD <A—C(Ey/d)F (1<i<p), (2:3)
where C2=d(K~2/@*D 1),

See the Appendix for a sketch of the proof. Putting Result 1 and Theorem 1 together,
we conclude that the choice C = t,(«) in (2-3) results in a test of size «, identical to R'.

Remark. 1t is 1nterest1ng to note that, in Result 1, A(X, %) has a simple expression
because infye g, (X —0) £ 4X —0) has a simple one. There is no simple analytic
expressmn however for infyc 5, (X — 0 271X — 0), a problem relating to that of finding
the maximum likelihood estimator of § when 6 is known to be in a cube.
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Another way to obtain a test is the confidence set approach. Let C(X, ) be a 1 —«
confidence set. Then a test for (1-1), which rejects the null hypothesis if and only if

C(X,8)cH,, (2+4)

has level a. Specifically, consider the Hotelling’s T2=d(X —0)S~1(X —6). Then
(d—p+1)T?*/(dp) has an F distribution with p and d —p+ 1 degrees of freedom. Let
F, ;- ,+1(®) be its upper o quantile. The set

C(X,2)=1{0:T>< 3}, (2:5)

with C}=F, ;_,+1(@)(dp)/(d — p+ 1), has coverage probability 1 —«. Putting (2+4) and
(2-5) together yields a test with the rejection region

| XO| < A—Cy(Ey/d)* (1<i<p). (2:6)
The test has size much less than a. In fact the actual size equals

oy =pr(xi/xi > 9)/2,

where g is the o upper quantile of y2/x3- ,+; and y7 denotes a chi-squared random variable
with k degrees of freedom. All the above chi-squared random variables are independent.
In particular, if p =1, then o, = a/2, a well-known result in the one-dimensional case. See,
for example, Hsu et al. (1994). Table 1 shows that o; is much less than the nominal level
o = 0-05. The test (2:6) has a rejection region contained in R’ and hence is uniformly less
powerful than R”.

Table 1. The actual size oy of the test derived from the confidence set
approach when the test level is 0-05, the number of characteristics p
varies and d — p + 1 is fixed at 23.

p=1 p=2 p=3 p=4 p=>5 p=10
a; 0025 666x107° 214x107% 737x107% 262x107% 161 x10°°

3. IMPROVED TEST

Although the intersection-union test R’ was shown to be a reasonable test in the last
section, it can be uniformly improved in power. In this section we will generalise the test
of Brown et al. (1997), given in (1-7), to the case p > 1. Here, we will apply the intersection-
union method again.

Consider the rejection region of an unbiased test

RY = {|X9| < B(£{)}

of Brown et al. (1997), given in (1-7) for the one-dimensional case. It is known that RY is
an unbiased level-a test for (2-1) which contains properly the rejection region of
Schuirmann’s (1987) test. Consequently, it has a uniformly larger power than Schuirmann’s
test. Consider the rejection region

for testing (1-1). Although no detailed evaluation was given, a similar test of this kind was
mentioned in Berger & Hsu (1996) except that RY is replaced by the one-dimensional test
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of Berger & Hsu which is analogous to Brown et al. (1997). Berger & Hsu’s test is slightly
less powerful, although having a smoother boundary. Obviously R{, uniformly improves
R!. Further, it is clear that R} has size o for testing (1:1) under only a marginal normal
assumption which is weaker than the multinormal assumption of X®. Both R}, and R’
have the good property that their power functions are decreasing in each |0®| when the
other 09’s and X are fixed. It seems desirable to have maximum power at 0 =0, or
equivalently when the two drug effects have the same mean. Unlike the one-dimensional
case, when p>1 R} is not unbiased. For p > 1, we shall show below that a nontrivial
unbiased test with a power function decreasing in 0 does not exist. Therefore, an unbiased
test for (1-1), if it exists, may have a pathological rejection region and may be difficult to
construct.

THEOREM 2. Let ®(X, £) be the critical function of a level-a unbiased test for (1-1) whose
power function is unimodal with respect to each coordinate 0. Then ®(X, ) is the trivial
test, that is ®(X, X) = o, almost surely.

See the Appendix for the proof.

Even in the one-dimensional case, the issue of whether or not one should use the test
of Brown et al. (1997) and a similar test proposed by Berger & Hsu remains somewhat
controversial; see Berger & Hsu (1996) and the related discussion by various authors.

One objection against these improved tests, as also pointed out by the associate editor
handling the paper, is the possibility of concluding bioequivalence even though, for
example in the one-dimensional case, the point estimator X of 0 is outside the bioequival-
ence range (—A, A). There is a simple way to resolve the problem, however. One may
simply modify the test of Brown et al. (1997) by further requiring to reject only if X is
inside (—A, A). The resulting test uniformly improves upon the two one-sided tests pro-
cedure and has a power similar to that of the original test; see Brown et al. (1997). For
our multidimensional problem, we may similarly modify the test by further requiring to
reject only if

max | X9 <A.

1<i<p

We would expect the power to be similar to that of the unmodified one.

4. NUMERICAL STUDIES OF POWER
We employ the model (1-3) and choose n; =n, =12, that is d =22, and A =1log(1-25)
in (1-1), which means that the ratios of two population means for the characteristics must
be within (0-8, 1-25) for bioequivalence to be asserted. All results are based on 100 000
simulations.
When p = 3, i.e. consider the area under the concentration curve, C,,,, and T,,,, simul-
taneously, the power is a function of

a 2
6w 21 P12010, 130103
_ ) _ 2
0=10 , Zo=|p12010; 03 P230,03 |,
3) 2
0 P130103 P230,03 03

where o; is the standard deviation of each variable and p;; is the correlation coefficient of
the (i, j)th variables. Therefore, £ = X,/24 by (1-4). In the simulation, 09 = a, ¢; = b and
pi;= c for all i, j. It is reasonable to assume that the p;;’s are positive since the area under
the concentration curve, C,,,., and T,,, are usually positively associated.
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Table 2. The power simulations of the test RT and the
improved test RY, in §§2 and 3 when p=3, 2, a=0,
b=02, 04 or 0:6 and c varies.

b=02 b=04 b=06
c R! R% RT R} R! RY
p=3
0 099911 099911 0-32068 0-32285 0-00253 0-01435
01 099915 099915 032116 0-32285 000271 001462
02 099907 099909 0-32749 0-32990 0-00304 0-01521
03 099930 099930 0-34180 0-34413 0-00361 001666
04 099930 099930 0-35490 0-35667 000444 001896
05 099916 099917 037449 0-37594 0-00619 002129
06 099923 099923 040116 040335 000826 002489
07 099922 099924 043944 044131 001221 003345
08 099936 099940 048392 048525 001965 004440
09 099942 099943 054011 0-54181 0-03744 007259
10 099971 099971 0-68450 0-68580 0-13766 0-24317
p=2

0 099943 099944 046706 046763 0-01923 0-05993
01 099947 099948 046802 046822 0-01932 0-05869
02 099945 099945 047310 047501 0-02045 0-06034
03 099943 099944 0-47657 047850 002137 0-06303
04 099950 0-99951 048763 048976 0-02421 0-06621
05 099937 099937 0-50121 0-50299 0-02658 0-06977
06 099955 099955 051687 0-51865 0-03052 0-07497
07 099938 099939 053662 0-53856 0-03636 0-08267
0-8 099941 099941 056142 0-56292 0-04674 009612
09 099970 099970 0-59507 0-59663 0-06331 012260
10 099972 099973 068422 0-68562 0-13720 024286

Table 2 gives for p=3 and p =2 the power simulations of the intersection-union test
and the improved test in §§ 2 and 3 when a=0, b =02, 0-4, 0-6 and as c increases from
0 to 1 in ten steps. The improved test RY, as expected, has a uniformly higher power than
the test R’. The improvement in power is larger when the standard deviation b and the
correlation coefficient ¢ become larger. In a somewhat extreme case, where b =06 and
¢ =1, the power improvements in Table 2 are about 0-10. However, the observations have
been log-transformed, and hence the standard deviation b is roughly the coefficient of
variation for the observations in the original scale, which is usually less than or equal to
0-4 in bioequivalence studies. It is unfortunate that for such b’s the improvement is small.
Drastically different methods have to be considered in order to improve upon R’ substan-
tially. However, our result does demonstrate the existence of tests uniformly improving
upon R’

APPENDIX
Proofs
Sketch of the proof of Result 1. Under model (1-2), one may show that

R —@d+1)2
MX, 3) = {1 + inf d(X, 9)} , (A1)
0¢H,
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where d(X, 0) = (X — 0)£~1(X — 0). Then A(X, £) < K is equivalent to
inf d(X, 0)> C%/d. (A2)
0€ Hy

If X € Hy, both (2-3) and (A-2) fail. If X ¢ H,, then X stays inside the cube H,. Let 0., be
the minimiser of the left-hand side of (A-2). Let P;; denote the (p — 1)-dimensional plane which
consists of points whose ith coordinate is equal to jA, where j=1 or j= —1, and let d;;=
minge p, d(X, 0). Since Oy, is the point of the intersection between the cube H, and the largest
ellipsoid of the form S = {0:d(X, 8) = c} such that S is contained in the cube,

d(X, Opin) = inf d(X, 0) = min dy;. (A-3)
€ Hp L,J

Let n =£7#0, and write P;; and d(X, 0) as
n'Sie=jA, (ETX —n)(EHX —n), (A4)

respectively, where e; is the ith coordinate vector. Then d;; is the square of the distance between
point £~ #X and plane P;; in the #-space. Hence.

PRGN
g s :

Using this, (A-3) and (A-2), we may establish (2-3).

Proof 0f Theorem 2. The normal distribution belongs to the exponential family and hence
E,x®(X, £) is an analytic function of 0 for each X. Now E,z®(X, £)=a if 0 = + A, because of
the unbiasedness of ®. Let A4 be the set of 6 such that |[§®| < A. Since E, (X, $)) is unimodal in
0D, it is not smaller than o on A. On the other hand E,;®(X, £) should be no larger than o on
AN H, because of its unbiasedness. This implies that E, 2<I)(X $) is constant & on 4 N H,, which
contains an open set of 0. Therefore, by analyticity, E, s @(X, $) =« for all  and . We conclude
that ®(X, £) = o almost surely by completeness, and the proof of the theorem is complete.
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