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Optimal Unbiased Tests for Equivalence

Weizhen WANG

in Intrasubject Variability

The equivalence in average bioavailability between formulations may not be sufficient for assessment of bioequivalence. The dif-
ference in intrasubject variability between formulations should also be considered. This article presents an unbiased test procedure
for equivalence in intrasubject variability of bioavailability that is uniformly more powerful than the two one-sided tests procedure
proposed by Liu and Chow. Under a stronger condition, a uniformly most powerful invariant test for this problem is proposed.

Some numerical comparisons and an example are also presented.

KEY WORDS: Cross over design; Linear regression; Two one-sided tests procedure; Uniformly most powerful invariant test.

1. INTRODUCTION

In a traditional testing approach, one tries to establish
that two treatments are different or one treatment is more
powerful than the other. Assuming normality, the uniformly
most powerful unbiased (UMPU) tests exist in many situa-
tions. In bioequivalence studies, however, the aim is to es-
tablish the similarity of two treatments. Thus the problem
becomes two-sided. For example, a new drug can obtain
U.S. Food and Drug Administration (FDA) approval by es-
tablishing its equivalence to a well-established drug, called
the reference drug.

The statistical question is then how to establish the simi-
larity of two treatments. Currently, the FDA (1992) requires
evidence only of equivalence in average bioavailability be-
tween formulations, formulated by comparing two popula-
tion means, for assessing bioequivalence. If these means are
within a predetermined tolerance limit (e.g., 20% by FDA),
then the two populations are considered similar. Many re-
searchers have worked on this problem. Schuirmann (1987)
proposed a two one-sided tests procedure that is compu-
tationally easy and is recommended in the FDA guidance
(1992). This is an exact a-level test (i.e., the supremum of
its type I error equals «), but it is biased. Recently Brown,
Hwang, and Munk (1997) proposed an unbiased test that is
uniformly more powerful than Schuirmann’s test. But An-
derson and Hauck (1990) and Liu and Chow (1992) argued
that not only the averages but also the variabilities of two
populations should be compared to ensure that two distribu-
tions are similar. This is especially true with the normality
assumption, because a normal distribution is uniquely de-
termined by its mean and variance. To address this problem,
Liu and Chow (1992) proposed a two one-sided tests proce-
dure that can detect equivalence in variability. This article
presents an unbiased test that is more powerful than Liu and
Chow’s. The technique is based on the result of Brown et
al. (1997). Additionally, for a simpler case in which there
is no subject effect, a stronger result—a uniformly most
powerful invariant (UMPI) test—is provided.
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and the referees for helpful comments and Professor Daniel Voss for edit-
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The model is a standard 2 x 2 crossover design that com-
pares a test drug formulation with a reference drug formu-
lation. It is expressed as follows:

Sequence 1 Yig; = p+ Si + Fr + P1 +&ma
Yir1 = u+Sau+Fr+ P+ C1+eim
and
Sequence 2 Yity = p+ Sio + Fr + Py + &2

Yire = p+ Sio+ Fr + P2 + Ca + €4r2, (1)

where Yj;;; is the response of the ith subject in the kth se-
quence for the jth formulation, in which j =R, T, k = 1, 2,
and ¢+ = 1,2,...,n% p is the overall mean; F; is the
fixed effect for the jth formulation with Fg + Fp = 0; P;
and P, are the fixed-period effects with P, + P, = 0; C;
and C, are the first-order carry-over effects with C; +C5 =
0; Si, is the random subject effect; and ¢,;, is the in-
trasubject random error in observing Yj,. It is also as-
sumed that S;; and ¢;;;; are mutually independent, and that
Szk %j N(0,0’%), EiTk 1{1\(}1 N(O, O'r2[\) and EiRk l"l\(/i N(0,0’%)
The intrasubject variability is represented by 0]2.

The difference between Fr and Fg represents the aver-
age bioavailability, and the ratio of 02 and o3 represents
the equivalence in intrasubject variability. Let A = 02 /0%
and A\; < A be two positive numbers. The hypotheses con-
sidered are

Ho: A< X or A>MX vs. Had<Ad<ix (2)

If we reject Hy, then equivalence in intrasubject variabil-
ity is confirmed. In practice, we usually select A; <1 < A2
with A\; A2 = 1, because then A = 1 implies that the two pop-
ulations have the same variability. But these assumptions
are not needed in the following theoretical development,
in which assessment of equivalence in variability does not
need equivalence in mean and vice versa. In other words,
the average bioavailability and the variability in bioavail-
ability are two independent issues. Therefore, to ensure the
switchability, the suggestion is to simultaneously test the
similarity of means and of variances. This article focuses
on how to develop tests for (2).
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Brown et al. (1997) derived an «-level unbiased test for

Ho:|0| > A vs. Ha:lf| <A (A >0) (3)
based on two independent statistics D and S, where D ~
N(6,0?) and S? ~ o2x2. Applying to (1), 6 is the difference
between Fr and Fg. When there is no carry-over effect
(i.e., when the C’s are all Os and Wy, is defined as (Y;1x —
Yirk)/2), then D is equal to >, W, and S? is a known
multiple of 3, 3", (Wix — W.x)2. Brown et al. (1997) were
also able to prove that their test has a larger rejection region
than Schuirmann’s test. These are used to derive an a-level
unbiased test for (2).
In this article, three cases are considered:

a. When there is no subject effect, no period effect and
no carry-over effect (i.e., S;x =0, P. =0, C. =0), or
equivalently, when a two-group parallel design is used;

b. when there is a subject effect but no period effect and
no carry-over effect (i.e. Six # 0, P. =0, C. = 0);

c. when the full model (1) is assumed.

Each of the cases a and b is a special case of the case be-
low it; case c is a general case that includes virtually all
practical situations. Section 2 gives a UMPI test for case a.
Section 3 discusses case b, because the subject effect tends
to be more significant and the period effect and the carry-
over effect tend to be negligible. An unbiased test for (2) is
provided. Section 4 considers case c. The same technique
as in Section 3 is used to obtain another unbiased test for
(2). However, the former test for case b is more powerful
when case b is true. Section 5 discusses the power of the
proposed tests in Sections 2 and 3. Some numerical results
describe what settings, in terms of the level of test, sam-
ple size, and alternative hypothesis (A1, A2), would provide
reasonable power. Section 6 gives an example to demon-
strate how to use the proposed unbiased tests, and Section
7 presents conclusions.

2. UNIFORMLY MOST POWERFUL INVARIANT TEST

This section focuses on case a in which no subject effect
exists. A UMPI test is derived. To discuss an invariant test,
first the group needs to be specified. The group consists
of all linear transformations with a positive scale. More
precisely, define

/
Yr = (Yir1,---, Ynir1, YiR2, - - -5 YnoR2)

and

A
Yr=ir1,...,Yn,11, Y172, - - -, Ypm2)-

Let G consist of transformations g on R2("1+72) gych that
9(Yr, Y1) = (cYrR+61,cYT + 63)

for some constants ¢ > 0, 6, §; € RL. It can be seen that
G forms a group under the composition of transformations
and that (2) is invariant under the group G.

The following notations are also necessary throughout
this article: For any pair of vectors X = (Xi,...,X,)
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and Y = (Y3,...,Y,), define Sxx = > ,(X; — X)?
and SXY = Z?:l(Xi - X)(Yl - Y)

For case a, Yr and Y7 are independent, because all S;;’s
vanish. The full model (1) reduces to

Yijk = p+ Fj + €4jk. (4)

Now af also represents the between-subject variability be-
cause of no subject effect. Then Sy,y, /0% and Sy, vy, /0%
are independent, and both have the x2 ., _, distribution.
Let n = log X and n; = log \;, for i = 1,2, and write (2) as

Ho:n<m or m>mn2 vs. Ha:m<n<mn. (5)

Let Z be log(Sy,y./SyrYr)- The distribution of Z involves
only 7, the new parameter of interest, and has nothing to do
with any nuisance parameters, such as p or Fr. The testing
problem (2) thus reduces to a one-parameter problem. The
statistic Z (or, equivalently, Sy.y./Syxys) can be used to
develop a uniformly most powerful (UMP) test among the
tests based on Z for (5). First, note that the distribution
family of Z is strictly totally positive of order 3 (STPs;
Lehmann 1986).

Lemma 2.1. The family of pdf of Z is STP3; with respect
to n.

Theorem 2.1. Under the model (4), among the tests
based on the observed data (Yg,Yr) through Sy.y./
SyqYr, there exists a UMP test &1 for (4) given by

1 ¢1 < Z =1og(Sy;vy/Syryr) < C2
0 otherwise,

o(Z) = {

where ¢; and ¢, are determined by E,, ®;(Z) = o for i =
1,2. Moreover, ®1(Z) is a UMPI test based on the observed
data (Yg, Yr) with respect to the group G.

Remark 2.1. One can use a UMPU test to check the exis-
tence of a subject effect. The sample correlation coefficient
of Yt and Yg is used to test the independence of Y and
Yr, which implies no subject effect (See Lehmann 1986,
p. 249).

Remark 2.2. The test ®; can also be applied to the non-
crossover setting; that is, a randomized trial with parallel
treatment groups. Because the different sequences, indexed
by k, have no effect on the model (4), this setting is equiv-
alent to a two-group parallel design.

When the period effect and the carry-over effect,
but no subject effect, are present, the test in Theo-
rem 2.1 may be adapted by using the test statistic
(SYTIYTI + SYT2YT2)/(SYR1YR1 + SYR2YR2)’ where Yry =
(Yirks- -, Ynere) and Yo = (Yirk, ..., Yo, 1) for k£ =
1,2. For different j and k, Y, has a different mean vec-
tor. If each Yj; is adjusted by its own sample mean, then
(SYTIYTI + SYTzYT2)/U’% and (SYmYm + SYRzYFu)/OIQK are
independent and both have the x2 ... _, distribution. Omit-
ting a similar proof, the following applies.

Proposition 2.1. Suppose that there is no subject effect
in (1); that is, S;; = 0, for all 4, k. There exists a UMPI test
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for (5) given by

1 Cl < Z = log((SYTlYTl + SYT2YT2)
on(2) = + (SYr1Yri + SYroYro)) < C2
0 otherwise,

where c¢; and c, are determined by E, ®1,(Z) = « for
i=1,2.

3. UNBIASED TEST

In Section 2 all results were based on the assumption
of no subject effect. When the subject effect cannot be ig-
nored, the problem is more difficult to resolve due to de-
pendence of Yt and Yg. It can no longer be reduced to
a one-parameter problem, because og, the variance of Sy,
is involved. However, it is possible to formulate it to be
a model with only two parameters. One happens to be an
increasing function of A, and the other is a functionally in-
dependent nuisance parameter. In this section assume that

Yijk = p+ Sik + Fj + €45k- (6)

To test (2), transform and reparameterize the problem so
that it becomes the testing problem of (3), where @ is the
slope in a regression line.

To transform the data, for any § # —1, define

_ Vi def [ YiTi — Yirk
Zik(8) = ( uik(6) > B ( Yirk + 6Yirk ) - O
Then Z;;(6) i N2(02(6),X2(6)), where
Fr — F
92(6) = ( (1+ 6)MT+ FRR(é —1) )

and

,(6) = 012)L + 0% O?F — 601%
ot — 80 (1+6)°0% + o7 + %0}

Different §’s correspond to different transformations. As is
shown later, an unbiased test for (2) will be derived for each
transformation. Although it appears that there are a great
number of unbiased tests, through a complicated algebraic
calculation it can be shown that these tests are identical
to each other. Therefore, there is indeed only one test. One
version, with a specified §; that simplifies the problem state-
ment, is developed later in this section.
To regress wu;,(6) against v, write

uzk(é) = [cov(uik(é),vik)/var(vik)]vik
+ [uzk(é) - (cov(uik(é),vik)/var(vik))vik]
= [(A=6)/(A + D]vik + & (),

where €;(6) = wik(6) — [(02 — 603)/(0% + o3)|vik. Let
eik(é) = ézk(é) — Eézk(é) Then

uik(6) = oA, 6) + B(X, 6)vi + eix(6), (8)

where a(,8) = Eé;(6) = (14 8)[p+ Fr(A = 1)/(A + 1)]
and

BA6) = (A=08)/(A+1). )
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These €;,’s are iid and normally distributed, because the
Z;’s are iid and normally distributed and the transforma-
tion is linear. Their common mean and variance are a(A, §)
and (1+6)2[o2+03 A/ (14 )], respectively. Most important,
v, and e;x(6) are independent, because their covariance is
equal to 0. If the simple linear regression is modeled with
uix(6) as regressor and v, as predictor, then the only dif-
ference from standard linear regression is that the predictor
vk is a random variable. However, due to independence of
v, and e;, one may condition on vy, first and reduce it to
a standard case. I summarize the discussion as follows.

Lemma 3.1. Let 0%(8) = (1 + 6)%[02 + oz M/ (1 + N)].
Then (8) holds, ex(5) 5 N(0,02(6)), vie = N(Fr —
Fr,0% + 0%), and e;x(6) and vy, are independent.

The following lemma is a classical result, so the proof is
omitted.

Lemma 3.2. Let V = (’011, ceeyUnql, V125 - - 7vn22)/7
let @(8) and ((8) be the least squares estimators for
a(A,6) and B(A,6), and let S%(8) = 3., |lwir(6) — &(8) —
B(6)vik]|?/Syy. Then for given Syy, 8(8) and S2(6) are
independent and B(8) ~ N(B(\,6), o2(6)/Syv), and
S2(8) ~ (02(8)/Svw)X2, 4n,—2- Moreover, Syy ~ (1 +
A)ORan-i-ng—l‘

Return to the choice of 6. From (9), one can see that
B(A, 6), the new parameter of interest, is strictly increasing
in A for any fixed 6 > —1 and that (2) is equivalent to

Ho: B(X,6) & (B(X1,0),8(A2,0))
vs. Ha: B(A,6) € (B(M,06),8(Xe,06)). (10)

This relationship reduces the problem of testing (2) to test-
ing (10), to which the result of Brown et al. (1997) can be
readily applied due to Lemma 3.2. To obtain an interval
centered at 0, 69 = (2)\1)\2 + A+ )\2)/()\1 + Ao + 2)(> 0)
should be chosen. In the case of \{Ay = 1, §g = 1. Let
B = B(X, &). Then (2) turns out to be

Ho: |8l = A vs. Ha:|B| < A, (11)
where A = (A2 — A1)/(A1 + A2 +2) > 0. Now an unbiased
test for (11) can be derived when working on this specified
80. Let Dy = ((8) and Sy = S(8) and use them as the
test statistics. Combined with Syv, three statistics emerge,
and Syy is hidden in the conditional variance of D,. These
satisfy all of the conditions in Lemma 3.2 in which § =
6o. For any given Syy, the problem becomes the average
bioavailability problem (3). If U(8) = (u11(8),. - ., un,1(6)
and U12(6), ce ,unzg(é))’, then

Do = Sy(se)v/Svv
and
So = (Su(se)u(e0)/ SV — Stsoyv/Sw) 2. (12)

The following lemma of Brown et al. (1997) deals with the
hypotheses (3).
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Lemma 3.3. Let D ~ N(8,0?), S? ~ 02x2, where 6 and
o are unknown parameters and D and S are independent.
Then for any o € (a*,1/2), there is an a-level unbiased
test ®g_p_M for (3) with A = ()\2 — )\1)/()\1 + Ao+ 2), SO
that
1 if |D| < T(S)

0 otherwise (13)

®p_n-Mm(D,S) = {

for some positive function 7', where

a*:/ sinn_l(x)da:// sin® !(z)dz. (14)
3n/4 0

Moreover, ®g_g_n is uniformly more powerful than
Schuirmann’s test ®g, where

1 if D] < A —tqnS/n/?

0 otherwise (15)

(I)S(D ) S ) = {
and t,, ,, is the upper a quantile of the Student’s ¢ distribu-
tion with n df. .

As mentioned by Brown et al. (1997), o* is always
smaller than .05 unless n is less than 5. Thus the constraint
does not cause a problem. The next theorem is the basic
result for Section 3. It defines an unbiased test for (2).

Theorem 3.1. For any o € («*,1/2) and n = ny +
ng — 2, &y = ®p_n_Mm(Do,Sp) defines an unbiased test
for (11), then for (2). Let ®;,_c be the two one-sided tests
procedure for (2) proposed by Liu and Chow (1992); that
is, ®;,_¢c =11if

t1 =r1n/(1 - 7’%)]1/2 > ton
and

ty =ra[n/(1 —r2)|Y? < ~tanm, (16)

where r; is the sample Pearson correlation coefficient be-
tween v;, and wu;x () for I = 1,2, and ®,_c = 0 otherwise.
Then &y is uniformly more powerful than ®;,_c.

Remark 3.1. In the proof of Theorem 3.1 in the Ap-
pendix, (16) is equivalent to

|Do| < A — tonSo/nt/?, (17)

which has a similar mathematical form to Schuirmann’s test
in (15). The rejection region of Liu and Chow’s test seems
to depend on &, by (17); however, (16) indicates that this
is not so. This may suggest that the unbiased test does not
depend on é either.

Actually, Theorem 3.1 is just one application of a general
strategy: Any valid test based on D and S for (3) can provide
a test for (2) replacing D and S by Dy and Sy. Lemma 3.2
connects (3) to (2). Through this connection, the problems
of average bioavailability and bioavailability in variability
become one problem.

The tests based on Dy and Sy are all invariant with re-
spect to the group G. Consequently, the UMPI test @1, as
defined in Theorem 2.1, is uniformly more powerful than
&y when there is no subject effect. However, when there is a
subject effect, ®; is inappropriate and may have size greater
than a.
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4. GENERALIZATION

Up to this point, the results considered do not assume
existence of the period effect and the carry-over effect. But
the example in Section 6 does consider such effects. Here I
generalize the results to the full model (1), including these
effects. In short, the only modification in the testing pro-
cedure is the reduced degrees of freedom. The results here
parallel those in Section 3, and the proofs are omitted.

The same data transformation, (7), is used. But the
Z;,(8)’s are no longer iid. They have the same covariance
matrix as before but a different mean vector for different
sequences (indexed by k). Fortunately, u;(6) can still be
regressed on vy, within a sequence (i.e., for each k). The
following equality holds:

Uik(6) = Olk()\7 5) + ﬁ()\, 6)Uz‘k + eik(é), (18)

where ax(X,6) = (1+8)[p+ (Fr + Pe)(A—1)/(A+ 1) +
Cx/(A+1)], for k = 1,2, and the other definitions remain
the same. This gives two regression lines with different in-
tercepts but the same slope. Independence of v;;, and e;x(6)
is still true. This leads to the following

Lemma 4.1. Equation (18) holds, and e;(6) i
N(0,02(6)) is independent of v;g.

The means for different sequences are different. After

adjustment by its own sample mean, each corresponding
statistic has one less degree of freedom.

Lemma 4.2. Let Vi = (vig,...,Unk), for &k =
1,2, let Gg(6) and f1(6) be the least squares es-
timators for (A, 6) and B()\,6), and let S2(6) =
>k luin(8) = 6x(6) — B1(6)vikll?/ Xk Svivi- Then for
given 3, Sv,v,, G1(6) and Si(6) are independent and
p1(6) ~ N(ﬂ()"é)7a2(6)/2ksvkvk)’ and S%((S) ~
(02(6)/Zk SVka)X%1+n2—3' Moreover, Zk SV, ~ (1 +
)‘)UIZXX%1+7L2—2'

Theorem 4.1. Define Ur(6) = (u1x(6),...,unk(6))
for k = 1,2, D01 = Bl(60)9 and SOl = Sl(éo) Let
®p_pg-m1(D,S) be the a-level Brown et al’s test for
n = ny +ny — 3, where a € (a*,1/2) and o* is defined
in (14). Then ®y; = ®p_u=m,1(Do1, So1) defines an unbi-
ased test for (11) under the model (1). Moreover, there is
a correspondence to Liu and Chow’s test for (11), denoted
by q)L—C,l’ and (I>L—C,1 =1if

t11 = ru[n/(l — 1"%1)]1/2 > ta,n
and
tgn = 7"2[/"‘/(1 - T%l)]l/Q < —ta,n,

(19)

where 71 = 32, Su, v/ (Zk Suc U () 2 Svievi) 2,
for I = 1,2, and ®1,_¢,; = 0 otherwise. Then ®y; is uni-
formly more powerful than ®1,_c ;.
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Remark 4.1. Equation (19) is equivalent to

|Dot| < A —ta,nSo1/n'/? (20)
and
Doy = 22 0x(50)Vi
Zk SVka
and
Sk Supso)etn) (T Suaiv)?]”
501 — k\90 k\00 _ k\00 k . (21)

Zk SVka (Zk SVka )2

5. NUMERICAL STUDIES OF POWER

This section presents power comparisons between the
UMPI test ®; and the unbiased test &y, and between the
unbiased test ®y and Liu and Chow’s test ®;,_c of Sec-
tions 2 and 3 based on numerical integrations using the
Gauss program. It focuses on cases a and b, because sim-
ilar results are expected for case c. The results show that
the improvement of ®y over ®1,_¢ is noticeable; compared
to the bioequivalence test of means, a larger sample size is
needed to achieve a reasonable power. For simplicity, as-
sume that Ay A = 1 in this section. It implies that §y = 1.

In the following three figures, the alternative hypothesis
given in (2) is (.5, 2), the sample size n; + no is 41, and the
test level is .1.

Figure 1 plots the powers of ®; and ®y against A un-
der the reduced model (4) for case a. It is expected that ®;
is uniformly more powerful than ®y by Theorem 2.1. The
maximal improvement of power can be 8% (from .55 to
.63), which occurs at A = 1. Because A\ Xy =1, ¢ = —¢1,
and c; is solved by Piog(x,)(|Z] < c2) = .1 from Theorem
2.1. The UMPI test ®; has a rejection region between two
straight lines Sy,y, = exp(c;)Syry, Which are symmetric
about Sy,y, = Sypyy in the (Sypyg, Sy;vr) plane. There-
fore, whenever there is evidence of no subject effect, the
UMPI test is preferred due to its power and simplicity.

When there is a subject effect (i.e., case b), the only valid
tests are our unbiased test &y and Liu and Chow’s test
®1,_c, defined in Theorem 3.1. Figure 2 plots their rejection
regions in terms of Dy and Sy. It is clear that ® has a

=

.
o
x
o
Q.
o X N L N . . . . . .
90 11 1.2 1.3 14 15 18 17 1.8 1.9 20 2.1
lambda
Figure 1. Power Comparison Between ®, and &, When )\ Varies.

——, the power of ®,; — — —, the power of ®.
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10

S.0
£

-1 0 1
0.0
Figure 2. Rejection Regions of ®, and ®,_c. The area between

the solid lines is the rejection region for ®,; the dashed triangle is the
rejection region for ®, _¢.

larger rejection region than ®y,_c, so it is uniformly more
powerful. (See Brown et al. (1997) for how to determine
the critical region of ®y.) Also, T'(Sy), defined in Theorem
3.1, is always positive for any Sy, and it decreases when Sy
is small and increases when S; is large. One issue raised
is whether T defines a sensibly shaped rejection region,
because it should be harder to reject the null hypothesis if
a larger Sy is observed. Brown et al. (1997) suggested that
one adjust T' to be a decreasing function or even truncate
T at the point when it starts to increase, if necessary.

Figure 3 plots the powers of ®y and ®&;_c at A = 1
against o9 = 0% /0%, the ratio of variances of S; and e;ry
in (6). For fixed ), the power is a function of oy. Note that
the power of ®1,_¢ drops to 0 quickly when oy becomes
large, whereas the power of ®y is always above .1 due to its
unbiasedness. The power of ®1,_¢ at oy = .625 falls below
the test level .1, whereas &y has power .2439, which is 15%
larger. When o = 2, which happens in the example of the
next section, ®;,_c has power less than .001, whereas the
power of &y is approximately .144.

One may notice that the maximal power of the unbiased
test from Figure 3 is only .55, which is attained at A = 1
and 0% = 0 and is much less than 1. When ¢ = 0 (i.e., case
a), ®; has a larger power than ®y. But, its maximal power

-
o T

Power

° 0.0 0.5 1.0 1.5 2.0 2.5
sigmo..0

Figure 3. Power Comparison Between ® and ®, _¢ at A = 1 When
oo = 02/0% Varies. —, the powér for &, — — —, the power for &, _¢,
and the power for the .1 level.
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Table 1. The Maximum Powers for the UMPI test (at A = 1) Witha = .05 and o = .1
When the Sample Size and the Alternative Hypothesis Vary
A1, Az)
ny + nz (1.25-1, 1.25) (1.571,1.5) (1.751, 1.75) 21,2
a = .05 21 .0566 .075 .108 .160
41 .0644 112 .225 423
61 .0725 167 413 .693
81 .0820 243 .604 .849
a=.1 21 113 150 212 .306
41 .128 .221 408 .631
61 145 .318 .621 .834
81 163 434 773 .928

achieved at A = 1 cannot be 1 either, which does not happen
for detecting the average bioavailability. In that case, if the
variance o2 goes to 0, then the power of ®g_p_nm goes
to one; in our case, however, the corresponding parameter
02(80)/(0% + o) has a positive lower bound and is not
able to go to 0. Thus to increase the power, one needs to
increase the sample size, the test level, or the alternative
region.

Table 1 presents the maximal powers of the UMPI test
®; of case a for different settings. Enlarging the range of
equivalence intervals turns out to be the most efficient way
to increase the power. If (A1, \2) is too short, such as (.8,
1.25), then the maximum power is only .163 even for 81 ob-
servations and .1 level. If the interval (A1, A2) is expanded,
then the power is improved. It seems reasonable to consider
the interval (.5, 2), which requires one standard deviation
to be within approximately 1.4 times the other. The power
increments from such a choice are more than .2 over the
column next on the left when the sample size exceeds 41.
Enlarging the type I error also helps increase the power. For
a = .05 and (A1, A2) = (.5, 2), the power is .423 for a sam-
ple size of 41. The power increases to .631, more than .21
higher, if the a-level is increased to .1. Usually the power
increases by .15 in this situation. To increase the power to
at least .8, the sample size must be at least 60. Addition-
ally, if there is a subject effect, then the sample size must
be even larger. The current choice of 12-24 for the bio-
equivalence test in mean is clearly too small. If one insists
on using o = .05 and A; = .8, even for case a where 1
is valid, then the power reaches .8 or higher only when the
sample size is around 700 or higher, as shown in Table 2.
Requiring so many observations seems striking.

I close this section with Table 3, which contains the pow-
ers of the unbiased test for different sample sizes when
0% = 20% and 0 = o2 under case b.

6. AN EXAMPLE

In this section the example presented by Liu and Chow

Table 2. The Maximum Power of ®, for Large Sample Sizes,
Where the Level oo = .05 and (A1, X\2) = (.8, 1.25)

Sample Size
100 300 500 700 900
Power of @, .093 .297 .607 .809 911

(1992) is used to illustrate the proposed unbiased test for as-
sessment of equivalence in variability. The results are com-
pared to Liu and Chow’s test. The purpose of the example
was to compare the bioavailability between two formula-
tions of a drug product. A standard 2 x 2 crossover design
was carried out with 24 healthy volunteers. Each volunteer
accepted either five 50 ml tablets (the test formulation) or
5 ml (50 mg/ml) of an oral suspension (the reference for-
mulation). Blood samples were collected at 0 hours prior to
dosing and at various times after dosing. The area under the
blood concentration curve (AUC) values from 0-32 hours
were calculated using the trapezoidal method and are given
in Table 4.

Columns 5 and 6 of Table 4 present the period effect and
the carry-over effect. It is not clear whether these effects are
significant. The full model (1), which includes all effects, is
then assumed to be on the safe side, and the unbiased test
®y; and Liu and Chow’s test ®y,_¢,; described in Section
4 are used in this section. Also, assume that A\; Az = 1.

From Table 4, we obtain Dy; = .0687 and Sp; = 2.098
by using (21). In fact, Dy; is the least squares estimator of
the slope of (18) with 8o = 1, and S2, /21 is the unbiased
estimator of the variance of Dg;. Also, the point estimates
for 02, 0%, and o? are calculated to be 14.89, 12.98, and
23.73. Therefore, ) is estimated to be 1.148. If the level « is
.05, then among the choices of the alternative hypothesis in
Table 1, (.5, 2) gives the largest A = 1/3 (by (11)). With this
A, (20) does not hold, because its right side is negative with
So1 = 2.098. Thus &1, ; fails to establish equivalence in
variability for all choices of (A1, A2) due to the monotonic-
ity of the right side of (20) in A. When the level « is .1, the
same things happen: ®;,_c ; fails to establish equivalence
in all cases. The situation is different for the unbiased test
®y1. The null hypothesis is rejected if |Dg; | is smaller than
T(So1) by Theorem 4.1. While T'(So;) is always positive,
some chance (maybe small) does exist for a small |Dg;| to
reject the null hypothesis. Also, T depends on A. Table 5
contains the T'(Sp1)’s corresponding to different test levels
and different choices of (A1, A2).

Table 3. The Power of ®,; When the Sample Size Varies, for Fixed
Level o = .1, (A1, A2) = (5, 2), 00 = 2, ando-?. = g'f'

Sample size
21 41 61 81
Power of &y 1246 1444 .1508 1479
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Table 4. AUC (0-32) for Test and Reference Formulations
Period

Sequence Subject number / 1 Subject total PD* CcD*

1
RT 1 74.675 73.675 148.350 —1.000 —1.000
RT 4 96.400 93.250 189.659 —3.150 —3.150
RT 5 101.950 102.125 204.075 175 175
RT 6 79.050 69.450 148.500 —9.600 —9.600
RT 11 79.050 69.025 148.075 —10.025 —10.025
RT 12 85.950 68.700 154.650 —17.250 —17.250
RT 15 69.725 59.425 129.150 —10.300 —10.300
RT 16 86.275 76.125 162.400 —10.150 —10.150
RT 19 112.675 114.875 227.550 2.200 2.200
RT 20 99.525 116.250 215.775 16.725 16.725
RT 23 89.425 64.175 153.600 —24.250 —24.250
RT 24 54.175 74575 129.750 19.400 19.400

2
TR 2 74.825 37.350 112175 —37.475 —37.475
TR 3 86.875 51.925 138.800 —34.950 34.950
TR 7 81.675 72175 153.850 —9.500 9.500
TR 8 92.700 77.500 170.200 —14.200 14.200
TR 9 50.450 71.875 122.325 21.425 —21.425
TR 10 66.125 94.025 160.150 27.900 —27.900
TR 13 122.450 124.975 247.425 2.525 —2.525
TR 14 99.075 86.225 184.300 —13.850 13.850
TR 17 86.350 95.925 182.275 9.575 —9.575
TR 18 49.925 67.100 117.025 - 17.175 —17.175
TR 21 42.700 59.425 102.125 16.725 —16.725
TR 22 91.725 114.050 205.775 22.325 —22.325

PD* = 2 X (period difference).

CD* =2 X (crossover difference).

In all cases considered here, ®1,_c ; fails to establish
equivalence in variability. So does ®y 1, except for the last
case, where @ = .1 and (A\,XA2) = (.5,2). In this case,
|Do1| = .0687 is smaller than T'(Sp;) = .0748, then ®y ;
rejects the null hypothesis, and equivalence in variability is
established.

When (A1, A2) = (.8, 1.25), numerical calculations show
that the p value for ®y; is .112, much smaller than the
p value for ®r,_c 1, 4635. All of the evidence suggests
that the unbiased tests do a much better job in establishing
equivalence in variability.

7. SUMMARY

As has been shown, it is hard to detect the accuracy, such
as (.8, 1.25), with .05 type I error and sample size 12-24.
With certain alternative hypothesis and test level, we may
need a large sample size to obtain a reasonable power. In the
absence of a subject effect, the UMPI test ®; in Theorem
2.1 (or @11, depending on the existence of the period ef-
fect and the carry-over effect) is recommended. The power
increment of the UMPI tests over the unbiased tests is sub-
stantial, and these tests are very easy to determine. Their

Table 5. The Boundary T (Spq)'s for Sp; = 2.098

(A1, Az), A
(8 125, (1571, 15), (175", 1.75), (5, 2),
1/9 1/5 3/11 1/3
a = .05 .0298 .0317 .0342 .0371
a=.1 .0597 .0635 .0686 .0748

critical values, c;, are based on the I distribution. When
a subject effect is present, the proposed unbiased test ®y
in Theorem 3.1 (or ®y;) should be used. The main advan-
tage of Liu and Chow’s test ®1,_¢ (or ®r,_c 1) is its ease of
use. But it has almost no power to detect the equivalence
in many cases. On the other hand, the unbiased test ®y (or
1) always has higher power to detect equivalence. Also,
the boundary of its rejection region (i.e., the function T') can
be calculated by computer (see Brown et al. 1997). A Gauss
program, for example, running on a Pentium computer can
solve it within 5 minutes and is available from the author.
An alternative formulation of equivalence in variability dis-
cussed by Wang (1995) allows the maximum power to be
1. Through linear regression, the problem of equivalence
in variability reduces to the average bioavailability prob-
lem. As pointed out by one of the referees, the proposed
unbiased tests are for intrasubject variability. Nonetheless,
it can be shown that they also define exact a-level tests to
detect the similarity of variabilities of the responses from
two formulations; that is, the variances of Y, and Yiry.

APPENDIX: PROOFS

Proof of Lemma 2.1
Let f, be the pdf of Z and n = ni + ny — 1, h(z) be

fu(2)/fo(2) for m < n'. Then fy(2) = exp(n(z —
n)/2)/18(n/2,n/2)(1 + exp(z —n))"] and
dlogh(z) e —e "

&z " Oremare - @b

Thus h(z) is strictly increasing in z, and the distribution family
of Z is monotone likelihood ratio. So that this distribution family
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is STP3, by problem 29 of Lehmann (1986, p. 119), it is sufficient
to show that the following holds: .

Forn < n' < 7" and K1,K>, K3 > 0, let g(2) = K1 fy(2) —
Ka for (2) + Ks forr(2). If g(z1) = g(23) = 0, then g is positive
outside the interval (21, z3) and negative inside.

9(2) >0 & Kafy(z) > Kifo(2) + Ks frr(2)

P n 1 2—n' n
S c>a lte + te 77 .
1+es 1+e*

(for some ¢, c; > 0).

Let I(z) be the right side of the last line,

1 + &1 n+1

[ dl +d2 (1+ez_7l//) ’ } )
where d; = —c; (exp(—7') —exp(—n)) > 0 and d2 = exp(—7') —
exp(—n") > 0. Because (1 + exp(z — 7))/(1 + exp(z — 1"")) is
strictly increasing in z, I'(2) = 0 at most one time. If I'(20) =
0 for some z, then I(2) is strictly decreasing on (—oo, zp) and
increasing on (2o, +00). Thus if g(21) = g(z3) = 0, which implies
that there is zy € (21, 23) so that I'(z) = 0, then g(z) is positive
outside (z1, z3) and negative inside.

B (1 + ez—n')n—lez

l(z) n (1 +ez—n)n+1

Proof of Theorem 2.1

Because f,(z) is continuous in z for each n and is STP;,
®;(Z) is the UMP test for (5) among the tests based on the
data through Sy..v../Syg Y by problem 30 of Lehmann (1986,
p. 120). Also, (Yr,YRr,Svy v ,SyrYg) are sufficient statis-
tics and Sy_y./SygYg iS maximal invariant with respect to
G; then ®;(Z) defines a UMPI test based on data through
(Yo, YR, Sy Yy, Synyg) Thus @ is UMPI by theorem 6 of
Lehmann (1986, p. 301).

Proof of Lemma 3.3
See theorem 1 of Brown et al. (1997).

Proof of Theorem 3.1

Now the parameter space Q = {w = (8, 4, Fr,0r,035)|8 €
(=60,+1), € R, Fr € R,0or > 0,05 > 0}. To see the unbiased-
ness of @y, it is sufficient to show that for any given Sy,

>
<a

if 8] < A

if 18] > A (A-2)

E.(®ulSvv) = {
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then

>«
fa

E.®y = E,E.(®v|Svv) = { ii ‘Z: § LA\ .
Applying Lemma 3.3 on Dy and Sy for any Syv, (A.2) holds.
Thus &y is unbiased.

By definition, &y = 1 iff |[Do| < T'(So), where Dy and Sy are
defined in (12). Let a = Sy,v/Svv, b = Syp,vg/Svv. Then
Dy = ((5() + 1)a+ 1, Sy = ((5() + 1)(b— a2)1/2, and

\/ﬁ [SU(AI)V/\/W}

t1

= \/1 = Stonv/ (Supnuen Svv)

VAl/ O +1) +d] [ Vb= @ = Va(Dy + 8)/5.

Similarly t; = n!/%2(Dy — A)/Sp. Thus (16) is equivalent to
(17). Hence for any given Svv, ®._c can be thought of as ®s,
Schuirmann’s test. Then that ®y is uniformly more powerful than
®;,_¢ follows from ®p_n_m being uniformly more powerful
than ®s.

[Received February 1995. Revised September 1996.]
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