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SUMMARY

We evaluate the validity of the test of individual equivalence ratios (TIER), a term coined
by Anderson & Hauck (1990). The test was also proposed in Wellek (1989). It is proved
to be a valid test under a class of unimodal symmetric distributions; this includes normal
distributions. Since most bioequivalence studies involve data which are normal, or at least
unimodal and symmetric, the test is typically valid. It is, however, not always valid, as
shown by counter examples.

Some key words: Crossover design; Symmetric distribution; Unimodal distribution.

1. INTRODUCTION

In bioequivalence studies, the goal is to demonstrate that a tested (T') drug has character-
istics similar to a reference (R) drug. Typically, these two treatments are applied to patients
and blood samples are compared in terms of bioavailabilities which are characterised by
pharmacokinetic variables such as the area under the concentration versus time curve,
the maximum concentration, and the time when the peak concentration is achieved. Since
the cost of seeking approval from the U.S. Food and Drug Administration, for example,
of a new drug through bioequivalence is less than one percent of what is needed to develop
an original drug, the bioequivalence approach has attracted enormous commercial
attention.

There are three definitions relating to bioequivalence: bioequivalence in average, bio-
equivalence in distribution and individual bioequivalence. The first two definitions focus
only on the equivalence of the averages or the distributions of the two treatments. The
last definition, however, refers to equivalence within an individual subject. Individual
bioequivalence, unlike the other types of bioequivalence, could guarantee switchability;
i.e. a patient could switch between the two treatments. This idea of individual bioequival-
ence was popularised in a very influential paper by Anderson & Hauck (1990). See also
Anderson (1993) for interesting pictorial explanations of how individual bioequivalence
differs from the other types.

Although current U.S. Food and Drug Administration guidance (FDA, 1992) is based
on bioequivalence in average, many discussions have pointed toward the more appealing
notion of individual bioequivalence. In this paper, we discuss the test of individual equival-
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ence ratios developed in Anderson & Hauck (1990) and also proposed in Wellek (1989,
1993).

To describe the test, let X;; be the measured bioavailability corresponding to the
ith subject, i=1,2,...,n, and jth formulation, j= T, R. It is assumed that Y;=logX;
satisfies

Y, =F+U;+e; (11)

where F; is the population average of the jth formulation, U;; is the deviation of the ith
individual effect from the population average for the jth formulation, and e;; is the within-
subject error. It is assumed that {e;} are independent of {U;;}. However, U;r and U,
may be correlated. It is further assumed that, for each j, U;; (1 <i<n) are independently
and identically distributed.

Let

Y=Yr—Yr=m+es, (1-2)
where
my=Fr—Fr+ Uz —Ug, &=er—ep,
Anderson & Hauck (1990) and Welleck (1989) considered testing the hypotheses
Hy:Py< Py, versus H,:Py>P,,, (1-3)

where P, =pr(|m;| <A) and A and P,;, are prespecified quantities. As an example, the
regulatory agency may specify that A =log(1-25) and P,;, = 0-8. This corresponds to a
definition of bioequivalence in which at least 80% of the subjects’ bioavailabilities on new
formulation in the original scale, that is the antilog of F; + U,;, are within 25% of that
of the standard formulation.

The test of individual equivalence ratios is to use the statistic

X =number of i’s such that |Y;| <A (1-4)

and consider the p-vale pr(X > x), where x is the realisation of (1-4) and X has a binomial
B(n, Py;,) distribution. The individual bioequivalence is declared if the p-value is less than
o, typically taken to be 0-05.

There are, however, criticisms about the test. We shall say that a test is o valid or valid
if the type I error is no greater than a prespecified level o. Note that the test of individual
equivalence ratios is obviously valid for testing against

where Py, = pr(]Y;| <A). Here the subscript W refers to the inclusion of the within error
¢ in the probability evaluation. However, it may not be valid for testing against H, in
(1-3). Therefore, the validity of the test of individual equivalence ratios is in question.
Although Schall & Luus (1993, p. 118) stated that Py, is in general smaller than P, and
claimed the test to be valid in general, no specific condition had been established which
implied the validity of the test of individual equivalence ratios. In this paper, we show
that the test is valid provided that P,;, >4, that m; and ¢; are symmetric, and that m;, has
a unimodal distribution; see Theorem 1. It is, however, not true that the test is always
valid; we give some counter examples in § 3. These counter examples, as implied by
Theorem 1, have to involve nonunimodal distributions. In bioequivalence studies, such
distributions are rare, and hence the validity of the test of individual equivalence ratios is
the norm.
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Our Theorem 1 has several other applications. In a related approach, Liu & Chow
(1997) use normal assumptions to derive different procedures. The null hypothesis they
consider is different from H, and is similar to HY. They showed that their test is valid
for their hypothesis. To the present authors, the hypothesis H, appears more appropriate
since the measurement error, not included in H,, should be irrelevant. An application of
Theorem 1, however, shows that Liu & Chow’s test is also valid for H, under their normal
assumptions. Similar ‘approximate’ results can be established for the nearly unbiased tests
proposed by W. Wang in his 1995 Ph.D. dissertation and in a Cornell technical report by
W. Wang and J. T. G. Hwang.

Although the test of individual equivalence ratios has been shown to be typically valid,
it does not mean that we endorse the use of it. As pointed out by an associate editor, the
test of individual equivalence ratios has other problems including the three discussed
below. First, as with virtually any test, the subjects are typically healthy; there is doubt
as to whether or not the inference can be applied to patients, and the only way out may
be to experiment with the drugs on the patients. Secondly, the test of individual equivalence
ratios dichotomises the data and the test may be too inefficient. Apparently, this prompted
the studies of Liu & Chow (1997) and the technical report by Wang and Hwang mentioned
above. The latter study provides a nearly unbiased test that improves greatly upon the
test of individual equivalence ratios. Finally, the test of individual equivalence ratios
applies only to a 2 x 2 crossover design. For such a design, it is not possible to separate
m; and ¢;. Therefore it seems better to use a higher-order design such as a four-period
crossover design with subjects allocated at random in each pair of periods to receive either
the sequence TR or RT. One theoretically interesting aspect of the present paper, however,
is that, even though m; cannot be separated from ¢;, nontrivial tests exist for a hypothesis
involving only m;.

2. A GENERAL THEOREM OF VALIDITY

We shall show that under fairly general assumptions a test that is valid for
HY : Py < P, is valid for

HO:PO<Pmin' (2'1)
A sufficient condition is that
H, implies HY . (2-2)

We shall say that a random variable X has a symmetric distribution about its mean u
if X —p and —(X — u) have the same distribution. Also a random variable Z is said to
have a unimodal distribution at a if its probability density function is nonincreasing for
z 2 a and is nondecreasing for z < a.

Now we may state the theorem.

THEOREM 1. Assume model (1-2) where m; and ¢; are independent. Suppose that the
distribution of ¢; is symmetric about zero and m; has a symmetric unimodal probability density
function at a. If Py, >4, then (2:2) holds. Consequently, any valid test for HY is valid for H,,.

Since the test of individual equivalence ratios is valid for HY, the theorem obviously
implies that the test of individual equivalence ratios is valid under the assumption in
Theorem 1. In particular, it is valid under the special case where m; and ¢; are normally
distributed and ¢; has a zero mean. Note that measured bioavailability, after the logarithm
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transformation, often appears normal, or at least symmetric and unimodal. Hence the test
of individual equivalence ratios is typically valid.

When the assumptions of Theorem 1 fail, the conclusion is false. The next section
includes counterexamples in which the test of individual equivalence ratios fails cata-
strophically. However, distributions of m and ¢ like those assumed for these counter-
examples do not seem to arise in bioequivalence studies.

Finally we demonstrate the relevance of Theorem 1 to the other tests. Liu and Chow’s
test applies to the following model as well as to more complicated ones:

Y,j=F;+S;+¢;, (2:3)

where F;, for j= T or R, is the fixed formulation effect and S; is the effect of the ith subject
and i=1,...,n They test

Hy: P c <Py, versus H;:Pic> Pui, (2-4)

where P o =pr(|Y;;y — Yig| <A). It is assumed that S; and ¢;; are independently normally
distributed with common mean zero and variances 3 and o7, respectively.
To describe their procedure, let

Y= Y)n S*=Y (Y- Y)P/{(n—1)n}.
Note that S? is an unbiased estimator for the variance of Y. Their procedure rejects Hy, if
|Y| <A — St ,(n*zpx), (25)

where t,,(n) is the o upper critical value of a noncentral ¢ distribution with v=n—1
degrees of freedom and noncentrality #, and zp« is the P* = 4(1 — P;,) upper critical value
of a standard normal distribution.

If one attempts to understand model (2-3) from Anderson & Hauck’s (1990) viewpoint,
the error term ¢; in (2:3) can be considered to be the sum of two errors,

&= di; + e, (2:6)

where e;; is the error incurred in measuring the bioavailabilities and d;; is the deviation
of the ith individual subject effect from S;. Substituting ¢;; in (2-3) by d;; + e;;, we may
write model (2-3) as (1-1) with

Note that the U,j’s defined here satisfy the assumptions of the U;;s described in the
paragraph after (1-1).

Anderson & Hauck’s hypothesis (1-3), however, is slightly different from Liu & Chow’s
hypothesis (2+4), since, in (2+4), the probability is evaluated with respect to e;; as well,
whereas P, defined right after (1-3) involves no e;;, which seems more reasonable. Liu &
Chow have demonstrated that their test (2-5) is valid for testing (2-4). However, is it valid
for (1-3)? The answer is yes, and is stated in the following corollary, which follows directly
from Theorem 1.

COROLLARY 1. Let U;; be as defined in (2-7) and m; and &; be defined as in the paragraph
containing (1-2). Suppose that m; and ¢; are independent and are normally distributed where
the mean of ¢; is zero. Then the test with the rejection region (2-5) is valid for testing (1:3)

A similar comment applies to the nearly unbiased tests in Chapter 7 of Wang’s Ph.D.
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thesis and the technical report of Wang and Hwang mentioned in § 1. These tests are
much more efficient in power than those of Anderson & Hauck (1990) and Liu & Chow
(1997). These tests are approximately valid and hence we can only conclude that they are
approximately valid for Anderson & Hauck’s problem.

3. COUNTEREXAMPLES

In this section we exhibit some examples in which the test of individual equivalence
ratios fails to be valid when the assumptions of Theorem 1 are violated.

Example 1. Assume that m and ¢ are statistically independent and have the following
probability distributions: m takes the two values —0-55 and 1-05 with probabilities 0-8
and 0-2; ¢ takes the two values —0-15 and 1-35 with probabilities 0-9 and 0-1. Note that
E(g) = 0. Hence Y = m + ¢ takes the four values —0-70, 0-80, 0-90 and 2-40 with probabilities
0-72, 0-08, 0-18 and 0-02.

We shall use A as a yardstick to measure m, ¢ and Y. This is equivalent to assuming
that all the variables have been divided by A, and hence we may assume from now on
that A=1 and P, =048. The relevant probabilities are P,=pr(|m|<1)=08 and
Py =pr(]Y| <1)=098. Note that Py, > P,, which contradicts (A-6), and so the conclusion
of Theorem 1 fails. More specifically, we consider n = 24 and x = 23. Based on the binomial
distribution with the incorrect p=0-8, the p-value suggested by the test of individual
equivalence ratios is pr(X > 23)=0-0331. On the other hand, the true distribution of X
corresponds to p =098, which leads to the p-value pr(X >23)=0-917. Hence the test of
individual equivalence ratios underestimates the p-value drastically.

In Example 1, the distributions of m and ¢ were asymmetrical. However, we could have
symmetric distributions which fail Theorem 1, as demonstrated below in Example 2.
Obviously, in Theorem 1, the distribution of m cannot be unimodal. The assumption of
unimodality therefore seems crucial.

Example 2. Assume that the probability distributions of two independent random vari-
ables m and ¢ are as follows: m takes three values —0-25, 0-45 and 1-15 with probabilities
0-2, 0-6 and 0-2; and ¢ takes the two values —0-3 and 0-3 with probability 0-5 for each.
Hence Y = m + ¢ takes the six values —0-55, 0-05, 0-15, 0-75, 0-85 and 1-45 with probabilities
0-1, 0-1, 0:3, 0:3, 0-1 and 0-1. Note that pr(jm|<1)=08 <pr(]Y|<1)=09. For n=24,
and x = 23, the p-value as suggested by the test of individual equivalence ratios is 0-0331,
whereas the correct p-value is 0-:293.

Example 3 (the continuous modification of Example 1). Assume that m and ¢ are indepen-
dent, with the normal mixture densities

0-76N(x; —0-55,0-05) + 0-24N(x; 1-05,0:05), 0-9N(x; —0-15, 0:05) + 0-1N(x; 1-35, 0:05),

respectively, where N(x; u, o) denotes the probability density function of a normal distri-
bution with mean u and standard deviation ¢. Hence Y has the distribution

0-684N(— 070, 0:05,/2) + 0-076N(0-8, 0:05,/2) + 0-216N(0:9, 0-05,/2)
+0-024N(2+4, 005,/2).

The probability density functions of m and Y exhibit clear multimodality, as revealed
by comparing the distances between the mixture component means with the component
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standard deviation. Some calculations give
pr(lm|<1)=08 (31)

and pr(|Y|<1)=0959. Note that Example 3 uses slightly different probabilities from
Example 1 in order that (3-1) is satisfied. For n =24 and x = 23 the correct p-value would
be 0-74, corresponding to the binomial distribution with p = 0959, whereas the p-value
suggested by the test of individual equivalence ratios is 0-0331, using p = 0-8.
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APPENDIX
Proof of Theorem 1

We shall drop the subscript i in ¢; and m;. Consider
pr(|m+ te| < A), (A1)
where 0 <t <1 is a parameter we introduce. The crucial part of the proof involves showing that

the probability decreases in ¢ if A > |a|, which implies
pr(im|<A)=pr(lm+e¢l <A) (A=]al). (A-2)
When a =0, (A2) requires only the assumption that ¢ be independent of m, by a theorem in
Anderson (1955). However, when a + 0, (A-2) holds for A > |a| only, and may fail for A <|a| even
under the assumptions of the theorem. Hence the result is different from the assertion that m is

more peaked about zero than m+e. See, for example, Birnbaum (1948) for the definition of
peakedness.

LEMMA A-‘l. Let f denote the probability density function of m with respect to Lebesgue measure
and let G denote the cumulative distribution function of €. Then

oo

%pr(|m+ts| <A)=— J e{f(A —te) — f(— A —te)} dG(e). (A-3)

— 00

Furthermore, if the distribution of ¢ is symmetric about zero, then (A-3) becomes

- r el f(A—te) + f(—A + te) — f(A + te) — f(— A — te)} dG(e). (A-4)

0
Proof. Write (A1) as
A—te
Jf f(m) dm dG(e).
—A-—te
Its derivative with respect to ¢ equals
Js{ —f(A —te) + f(— A —te)} dG(e),

which establishes (A-3).
To prove (A-4), write the right-hand side of (A-3) as

_<r + r )s{f(A—ts)—f(A—ts)}dG(s).
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Applying a change of variables to the second integral and using the symmetry of the distribution
of ¢ and the fact that the integrand is zero at ¢ =0, we establish (A-4). O

LEMMA A-2. Assume that m has a symmetric unimodal probability density function at a. If
la| <A (A'5)
then
pr(im+ ¢l <A)<pr(jm| <A). (A6)

Proof. Let f, denote the probability density function of m — a and hence f(t) = f,(t — a). Note
that fo(t) is a nonincreasing function of |¢|. To determine the sign in (A-4), note that

fA—te)+f(—A+1te)— f(A+te) — f(—A—te) = fo(A —te — a) — fo(A + te —a)
+fo(—A+te—a)— fo(—A—te—a). (A7)
By (A'5), for e>0 and t >0,
|A—te—a|<|A+te—al, |—A+te—al<|—A—te—al

Thus (A7) is nonnegative and hence (A-4) and (A-3) are nonpositive, which, in turn, implies the
conclusion of this lemma. O

Now we return to the proof of Theorem 1. All we need to show is that (2:2) holds. To do so,
consider two cases: |a| <A and |a| > A. For the first case, Lemma A-2 gives (2-2). For the second
case, where |a| > A, we shall show that HY holds, which completes the proof. Since P, > %, we
see that pr(|m + ¢| <A) <%, which implies HY . This last inequality is obvious, since m + ¢ has a
distribution symmetric with respect to a, which is outside the interval [—A, A].

Proof of Corollary 1. Liu & Chow’s test is based on the difference
Yr— Yig=Fr— Fr+ &7 — & (A-8)
The true model we are considering is model (1-1), which gives
Yir—Yr=Fr—Fr+ Uir —Ugr +eir —er. (A9)

Note that Liu & Chow’s test is valid for testing P < Py, and hence it should be valid for testing
the same hypothesis where Y,y — Yz is replaced by (A9). This is because we may redefine
Uir — Uir + e;ir —eig in (A9) as & — &g in (A-8). Now, under model (A-9) or model (1-1), we
consider the hypothesis (1-3). By Theorem 1, Liu & Chow’s test is valid.
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