
Chapter 17Chapter 17

Recursion

2
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Implementing a Function Call: OverviewImplementing a Function Call: Overview

Calling function

allocate memory for activation
record (push)

copy arguments into stack
arguments

call function

get result from stack (pop)
deallocate memory for

activation record (pop)

Called function
allocate space for return value

[bookkeeping] (push)
store mandatory callee save

registers [bookkeeping] (push)
set frame pointer
allocate local variables (push)

execute code

put result in return value space
deallocate local variables (pop)
load callee save registers (pop)
return

3
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Activation RecordActivation Record

 int funName(int a, int b)
{
int w, x, y;
.
.
.
return y;

}

Name Type Offset Scope

a
b
w
x
y

int
int
int
int
int

4
5
0
-1
-2

funName
funName
funName
funName
funName

y
x
w

dynamic link
return address

return value
a
b

bookkeeping

locals

args

R5

R6

4
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Summary of LCSummary of LC--3 Function Call 3 Function Call
ImplementationImplementation

1. Caller pushes arguments (last to first).

2. Caller invokes subroutine (JSR).

3. Callee allocates return value, pushes R7 and R5.

4. Callee allocates space for local variables (first to last).

5. Callee executes function code.

6. Callee stores result into return value slot.

7. Callee pops local vars, pops R5, pops R7.

8. Callee returns (RET/JMP R7).

9. Caller loads return value and pops arguments.

10. Caller resumes computation…

5
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

What is Recursion?What is Recursion?

 A recursive function is one that solves its task by calling itself on
smaller pieces of data.
– Similar to recurrence function in mathematics.
– Like iteration -- can be used interchangeably;

sometimes recursion results in a simpler solution.
 Standard example: Fibonacci numbers

– The n-th Fibonacci number is the sum of the previous two Fibonacci
numbers.

– F(n) = F(n – 1) + F(n – 2) where F(1) = F(0) = 1

int Fibonacci(int n){
if ((n == 0) || (n == 1))

return 1;
else

return Fibonacci(n-1) + Fibonacci(n-2);
}

6
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Activation RecordsActivation Records

 Whenever Fibonacci is invoked, a new activation record is pushed onto
the stack.

Fib(1)

R6

Fib(2)

Fib(3)

main

main calls
Fibonacci(3)

Fibonacci(3) calls
Fibonacci(2)

Fibonacci(2) calls
Fibonacci(1)

R6

Fib(3)

main

R6

Fib(2)

Fib(3)

main

7
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Activation Records (cont.)Activation Records (cont.)

Fibonacci(1) returns,
Fibonacci(2) calls

Fibonacci(0)

Fibonacci(2) returns,
Fibonacci(3) calls

Fibonacci(1)

Fibonacci(3)
returns

R6

main

R6

Fib(1)

Fib(3)

main

Fib(0)

R6

Fib(2)

Fib(3)

main

8
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Tracing the Function CallsTracing the Function Calls

 If we are debugging this program,
we might want to trace all the calls of Fibonacci.

– Note: A trace will also contain the arguments
passed into the function.

 For Fibonacci(3), a trace looks like:
 Fibonacci(3)

Fibonacci(2)
Fibonacci(1)
Fibonacci(0)

Fibonacci(1)

 What would trace of Fibonacci(4) look like?

9
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Fibonacci: LCFibonacci: LC--3 Code3 Code

 Activation Record

temp
dynamic link

return address
return value

n

bookkeeping

arg

Compiler generates
anonymous variable to hold
result of first Fibonacci call.

local

10
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

In Summary: The StackIn Summary: The Stack

 Since our program usually starts at a low memory address and grows
upward, we start the stack at a high memory address and work
downward.

 Purposes
– Temporary storage of variables

– Temporary storage of program addresses

– Communication with subroutines
 Push variables on stack

 Jump to subroutine

 Clean stack

 Return

11
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Parameter passing on the stackParameter passing on the stack
 If we use registers to pass our parameters:

– Limit of 8 parameters to/from any subroutine.
– We use up registers so they are not available to our program.

 So, instead we push the parameters onto the stack.
– Parameters are passed on the stack
– Return values can be provided in registers (such as R0) or on the stack.
– Generally, only R6 should be changed by a subroutine.

 Other registers that are changed should must be callee saved/restored.
 Subroutines should be transparent

 Both the subroutine and the main program must know how many
parameters are being passed!

– In C we would use a prototype: int power (int number, int exponent);

 In assembly, you must take care of this yourself.
 After you return from a subroutine, you must also clear the stack.

– Clean up your mess!

12
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Characteristics of good subroutinesCharacteristics of good subroutines

 Readability – well documented.

 Generality – can be easily reused elsewhere
– Passing arguments on the stack does this.

 Transparency – you have to leave the registers like you found them, except R6.
– Registers must be callee saved.

 Re-entrant – subroutine can call itself if necessary
– Store all information relevant to specific execution to non-fixed memory locations

 The stack!

– This includes temporary callee storage of register values!

 Secure – No unexpected side effects on the stack / memory.

13
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Know how to…Know how to…

 Push parameters onto the stack

 Access parameters on the stack using base + offset addressing mode

 Draw the stack to keep track of subroutine execution
– Parameters

– Return address

 Clean the stack after a subroutine call

14
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Practice problemsPractice problems

 14.2, 14.4, 14.9, 14.10, 14.15 (good!)

 The convention in LC-3 assembly is that all registers are callee-saved
except for R5 (the frame pointer) R6 (the stack pointer) and R7 (the
return link).

– Why is R5 not callee-saved?

– Why is R6 not callee-saved?

– Why is R7 not callee-saved?
 Is it true that any problem that can be solved recursively can be solved

iteratively using a stack data structure? Why or why not?

15
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

main() {
int i, j, k;

i = 5;
j = 3;
…

k = sub1(i, j);
…

}

int sub1(a, b) {
int x, y;
…

x = a;
y = sub2 (x, 3);
return y;

}

int sub2(var1, var2) {
int temp;
…

temp = var1 – var2;
return temp;

}

6FD8
6FD9
6FDA
6FDB
6FDC
6FDD
6FDE
6FDF
6FE0
6FE1
6FE2
6FE3
6FE4
6FE5
6FE6
6FE7
6FE8
6FE9
6FEA
6FEB
6FEC
6FED
6FEE
6FEF
6FF0
6FF1
6FF2
6FF3
6FF4
6FF5
6FF6
6FF7
6FF8
6FF9
6FFA
6FFB
6FFC
6FFD
6FFE
6FFF
7000

R5

R6
i
j
k

