
1

Chapter 10/11/12/13Chapter 10/11/12/13

High Level Programming Languages
Variables and Operators

The runtime stack

Emphasis on how C-like languages are converted to LC-3 assembly

2
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

A HighA High--Level LanguagesLevel Languages

 Gives symbolic names to values
– don’t need to know which register or memory location

 Provides abstraction of underlying hardware
– operations do not depend on instruction set

– example: can write “a = b * c”, even though
LC-3 doesn’t have a multiply instruction

 Provides expressiveness
– use meaningful symbols that convey meaning

– simple expressions for common control patterns (if-then-else)

 Enhances code readability
 Safeguards against bugs

– can enforce rules or conditions at compile-time or run-time

 If it can be specified in a high-level language then it MUST be do-able in
assembly!

3
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Compilation vs. InterpretationCompilation vs. Interpretation

 Different ways of translating high-level language

 Interpretation
– interpreter = program that executes program statements
– generally one line/command at a time

– limited processing
– easy to debug, make changes, view intermediate results

– languages: BASIC, LISP, Perl, Java, Matlab, C-shell

 Compilation
– translates statements into machine language

 does not execute, but creates executable program

– performs optimization over multiple statements
– change requires recompilation

 can be harder to debug, since executed code may be
different

– languages: C, C++, Fortran, Pascal

Get W from the
keyboard.
X = W + W
Y = X + X
Z = Y + Y
Print Z to screen.

How many arithmetic
operations when
interpreted? When
compiled with
optimization?

4
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Compiling a C ProgramCompiling a C Program

 Entire mechanism is usually
called the “compiler”

 Preprocessor
– macro substitution

– conditional compilation

– “source-level” transformations
 output is still C

 Compiler
– generates object file

 machine instructions

 Linker
– combine object files

(including libraries)
into executable image

C
Source and

Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

5
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

CompilerCompiler

 Source Code Analysis
– “front end”
– parses programs to identify its pieces

 variables, expressions, statements, functions, etc.

– depends on language (not on target machine)

 Code Generation
– “back end”
– generates machine code from analyzed source
– may optimize machine code to make it run more efficiently

 Consider automated HTML generation…
– very dependent on target machine

 Symbol Table
– map between symbolic names and items
– like assembler, but more kinds of information

6
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

A Simple C ProgramA Simple C Program
#include <stdio.h>
#define STOP 0

/* Function: main */
/* Description: counts down from user input to STOP */
main()
{ /* variable declarations */

int counter; /* an integer to hold count values */
int startPoint; /* starting point for countdown */

printf("Enter a positive number: ");
scanf("%d", &startPoint);

/* output count down */
for (counter=startPoint; counter >= STOP; counter--)

printf("%d\n", counter);
}

2

7
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Preprocessor DirectivesPreprocessor Directives

 #include <stdio.h>
– Before compiling, copy contents of header file (stdio.h) into source code.

– Header files typically contain descriptions of functions and variables
needed by the program.
 no restrictions -- could be any C source code

 #define STOP 0
– Before compiling, replace all instances of the string "STOP" with the string

"0"

– Called a macro

– Used for values that won't change during execution, but might change if
the program is reused. (Must recompile.)

 Every C program must have exactly one function called main().
– Be careful with what you #include!

– main() determines the initial PC.

8
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Output with printfOutput with printf

 Variety of I/O functions in C Standard Library.
 Must include <stdio.h> to use them.

 printf: Can print arbitrary expressions, including formatted variables
printf("%d\n", startPoint - counter);

 Print multiple expressions with a single statement
 printf("%d %d\n", counter, startPoint -

counter);

 Different formatting options:
 %d decimal integer
 %x hexadecimal integer

 %c ASCII character
 %f floating-point number

9
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Examples of OutputExamples of Output

 This code:
 printf("%d is a prime number.\n", 43);
 printf("43 plus 59 in decimal is %d.\n", 43+59);
 printf("43 plus 59 in hex is %x.\n", 43+59);
 printf("43 plus 59 as a character is %c.\n", 43+59);

 produces this output:
 43 is a prime number.
 43 + 59 in decimal is 102.
 43 + 59 in hex is 66.
 43 + 59 as a character is f.

10
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Input with scanfInput with scanf

 Many of the same formatting characters are available for user input.

 scanf("%c", &nextChar);
– reads a single character and stores it in nextChar

 scanf("%f", &radius);
– reads a floating point number and stores it in radius

 scanf("%d %d", &length, &width);
– reads two decimal integers (separated by whitespace), stores the first one

in length and the second in width

 Must use address-of operator (&) for variables being modified.
– We’ll revisit pass by reference/value in a future lecture

11
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Data TypesData Types

 Variables are used as names for data items.
 Each variable has a type, type qualifiers, and a storage class which tells

the compiler how the data is to be interpreted (and how much space it
needs, etc.).

 int counter;
 Basic data types:

– Integral: int (at least 16 bits) Qualifiers: signed, unsigned, long
– Floating-point: float (at least 32 bits), double
– Character: char (at least 8 bits)
– Enumerated: enum hobbits {bilbo, frodo, samwise, pippen, merry}

 Storage class: automatic, static, register
 Derived data types: pointers, arrays, structures
 Exact size can vary, depending on processor

– int is supposed to be "natural" integer size;
– for LC-3, that's 16 bits -- 32 bits for most modern processors

12
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

High level languages have rules that High level languages have rules that
specify the data type of resultspecify the data type of result

 Addition/Subtraction: If mixed types, smaller type is "promoted" to
larger.
– x + 4.3 answer will be float

 Division: If mixed type, the default result is a truncated signed integer
– For int x = 5: (x / 3 = = 1) is true! Not 1.6! Not 2! 1!

– For float f = 5: (f / 3 = = 1) is false!

– For int x = 5: ((float) x / 3 = = 1) is false!

 The rules can be overridden by typecasting the operands or result!
– the compiler does this for you automatically to match the destination

type!

– int si = 2.5 / 3 is 0

– float f = 2.5 / 3 is 0.833333 [Note automatic typecasting of 3]

 Without typecasting you are stuck with the limitations of the data type
the compiler assigned for the storage/calculation of your intermediate
value

3

13
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Variables and ScopeVariables and Scope

 Where are variable stored? Where can they be accessed? Why?
 All C variables are defined as being in one of two storage classes

– Automatic storage class (on the stack, uninitialized)
– Static storage class (in the global memory area, initialized to 0)

 Compiler infers scope from where variable is declared unless specified
– programmer doesn't have to explicitly state (but can!)
– automatic int x;
– static int y;

 Global: accessed anywhere in program (default static)
– Global variable is declared outside all blocks

 Local: only accessible in a particular region (default automatic)
– Variable is local to the block in which it is declared
– block defined by open and closed braces { }
– can access variable declared in any "containing" block

14
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Allocating Space for VariablesAllocating Space for Variables

 Global data section
– All global variables stored here

(actually all static variables)

– R4 points to beginning (global pointer)

 Run-time stack
– Used for local variables

– R6 points to top of stack (stack pointer)

– R5 points to top frame on stack (frame
pointer)

– New frame for each block
(goes away when block exited)

 Offset = distance from beginning
of storage area

– Global: LDR R1, R4, #4

– Local: LDR R2, R5, #-3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6
R5

15
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Stack Data StructureStack Data Structure

 Abstract Data Structures
– are defined simply by the rules for inserting and extracting data

 The rule for a Stack is LIFO (Last In - First Out)
– Operations:

 Push (enter item at top of stack)
 Pop (remove item from top of stack)

– Error conditions:
 Underflow (trying to pop from empty stack)
 Overflow (trying to push onto full stack)

– We just have to keep track of the address of top of stack (TOS)

16
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

A software stackA software stack

 Implemented in memory
– The Top Of Stack moves as new data is entered

 Here R6 is the TOS register, a pointer to the Top Of Stack

17
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

ExampleExample

 #include <stdio.h>
 int itsGlobal = 0;

 main()
 {
 int itsLocal = 1; /* local to main */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 {
 int itsLocal = 2; /* local to this block */
 itsGlobal = 4; /* change global variable */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }

 Output
 Global 0 Local 1

Global 4 Local 2
Global 4 Local 1

18
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Variables and Memory LocationsVariables and Memory Locations

 In our examples, a variable is always stored in memory.
– For each assignment, one must get the operands (possibly requiring memory

loads), perform the operation, and then store the result to memory.

 Optimizing compilers try to keep variables allocated in registers.
– C allows the user to provide hints to the compiler

register int x;

 Like the assembler, the compiler

needs a symbol table

 In the assembler
– Identifiers (names) are labels

associated with memory addresses

 In the compiler
– Name, Type, Location, Scope

Compiler Symbol Table

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main

4

19
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Example: Compiling to LCExample: Compiling to LC--33

 #include <stdio.h>
 int inGlobal;

 main() {
 int inLocal;
 int outLocalA;
 int outLocalB;

 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal++ & ~inGlobal;
 outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

 /* print results */
 printf("The results are: outLocalA = %d, outLocalB = %d\n",
 outLocalA, outLocalB);
 }

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main

20
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

The stack frameThe stack frame

 Local variables are stored in a stack frame associated
with the current scope

– As we change scope, we effectively change both
the top and the bottom of the stack

– R6 is the stack pointer – holds the address of the
top of the stack

– R5 is the frame pointer – holds address
of the base of the current frame.

 Symbol table “offset” gives the distance from
the base of the frame.

– A new frame is pushed on the
run-time stack each time a block is entered.

– Because stack grows downward (towards memory
address x0000) the base is the highest address of the
frame, and variable offsets are negative.

outLocalB
outLocalA

inLocalR5

R6

21
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

OperatorsOperators

 Programmers manipulate variables using the operators provided by the high-
level language.

 You need to know what these operators assume
– Function
– Precedence & Associativity
– Data type of result

 You are assumed to know all standard C/C++ operators, including bitwise ops:

Symbol Operation Usage
~ bitwise NOT ~x
<< left shift x << y
>> right shift x >> y
& bitwise AND x & y
^ bitwise XOR x ^ y
| bitwise OR x | y

22
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Control StructuresControl Structures

 If it can be done in “C” in must be able to be done in assembly

 Conditionals
– making a decision about which code to execute, based on evaluated

expression

– if

– if-else

– switch

 Iteration
– executing code multiple times, ending based on evaluated expression

– while

– for

– do-while

23
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Implementing IFImplementing IF--ELSEELSE

int x,y,z;

….
if (x){

y++;
z--;

} else {
y--;
z++;

}

LDR R0, R5, #0
BRz ELSE
; x is not zero
LDR R1, R5, #-1 ; incr y
ADD R1, R1, #1
STR R1, R5, #-1
LDR R1, R5, #02 ; decr z
ADD R1, R1, #1
STR R1, R5, #-2
JMP DONE ; skip else code
; x is zero

ELSE LDR R1, R5, #-1 ; decr y
ADD R1, R1, #-1
STR R1, R5, #-1
LDR R1, R5, #-2 ; incr z
ADD R1, R1, #1
STR R1, R5, #-2

DONE ... ; next statement

condition

block_if block_else

T F

24
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

SwitchSwitch

 switch (expression) {
case const1:
action1; break;

case const2:
action2; break;

default:
action3;

 }

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T
F

F

Alternative to long if-else chain.
Case expressions must be constant.
If break is not used, then case
"falls through" to the next.

5

25
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Implementing WHILEImplementing WHILE

x = 0;
while (x < 10) {

printf(“%d ”, x);
x = x + 1;

}

AND R0, R0, #0
STR R0, R5, #0 ; x = 0
; test

LOOP LDR R0, R5, #0 ; load x
ADD R0, R0, #-10
BRzp DONE
; loop body
LDR R0, R5, #0 ; load x
...
<printf>
...
ADD R0, R0, #1 ; incr x
STR R0, R5, #0
JMP LOOP ; test again

DONE ; next statement

test

loop_body
T

F

26
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Implementing FORImplementing FOR

for (i = 0; i < 10; i++)
printf(“%d ”, i);

; init
AND R0, R0, #0
STR R0, R5, #0 ; i = 0
; test

LOOP LDR R0, R5, #0 ; load i
ADD R0, R0, #-10
BRzp DONE
; loop body
LDR R0, R5, #0 ; load i
...
<printf>
...
; re-init
ADD R0, R0, #1 ; incr i
STR R0, R5, #0
JMP LOOP ; test again

DONE ; next statement

init

test

loop_body

re-init

F

T

27
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Example: Compiling to LCExample: Compiling to LC--33

 #include <stdio.h>
 int inGlobal;

 main() {
 int inLocal;
 int outLocalA;
 int outLocalB;

 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal++ & ~inGlobal;
 outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

 /* print results */
 printf("The results are: outLocalA = %d, outLocalB = %d\n",
 outLocalA, outLocalB);
 }

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main

28
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Example: Code GenerationExample: Code Generation

 ; main
 ; initialize variables

 ; inLocal = 5; inGlobal = 3;

 AND R0, R0, #0
ADD R0, R0, #5 ; inLocal = 5
STR R0, R5, #0 ; (offset = 0)

AND R0, R0, #0
ADD R0, R0, #3 ; inGlobal = 3
STR R0, R4, #0 ; (offset = 0)

29
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Example (continued)Example (continued)

 ; first statement:
 ; outLocalA = inLocal++ & ~inGlobal;

LDR R0, R5, #0 ; get inLocal
ADD R1, R0, #1 ; increment
STR R1, R5, #0 ; store

LDR R1, R4, #0 ; get inGlobal
NOT R1, R1 ; ~inGlobal
AND R2, R0, R1 ; inLocal & ~inGlobal
STR R2, R5, #-1 ; store in outLocalA

; (offset = -1)

30
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Example (continued)Example (continued)

 ; next statement:
 ; outLocalB = (inLocal + inGlobal)

; - (inLocal - inGlobal);

LDR R0, R5, #0 ; inLocal
LDR R1, R4, #0 ; inGlobal
ADD R0, R0, R1 ; R0 is sum
LDR R2, R5, #0 ; inLocal
LDR R3, R5, #0 ; inGlobal
NOT R3, R3
ADD R3, R3, #1
ADD R2, R2, R3 ; R2 is difference
NOT R2, R2 ; negate
ADD R2, R2, #1
ADD R0, R0, R2 ; R0 = R0 - R2
STR R0, R5, #-2 ; outLocalB (offset = -2)

6

31
Wright State University, College of Engineering
Dr . Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assemb ly

Practice problemsPractice problems

 10.3, 10.8, 12.1, 12.5

