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High Level Programming Languages
Variables and Operators

The runtime stack

Emphasis on how C-like languages are converted to LC-3 assembly
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A HighA High--Level LanguagesLevel Languages

 Gives symbolic names to values
– don’t need to know which register or memory location

 Provides abstraction of underlying hardware
– operations do not depend on instruction set

– example: can write “a = b * c”, even though
LC-3 doesn’t have a multiply instruction

 Provides expressiveness
– use meaningful symbols that convey meaning

– simple expressions for common control patterns (if-then-else)

 Enhances code readability
 Safeguards against bugs

– can enforce rules or conditions at compile-time or run-time

 If it can be specified in a high-level language then it MUST be do-able in 
assembly!
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Compilation vs. InterpretationCompilation vs. Interpretation

 Different ways of translating high-level language

 Interpretation
– interpreter = program that executes program statements
– generally one line/command at a time

– limited processing
– easy to debug, make changes, view intermediate results

– languages: BASIC, LISP, Perl, Java, Matlab, C-shell

 Compilation
– translates statements into machine language

 does not execute, but creates executable program

– performs optimization over multiple statements
– change requires recompilation

 can be harder to debug, since executed code may be 
different

– languages: C, C++, Fortran, Pascal

Get W from the 
keyboard.
X = W + W
Y = X + X
Z = Y + Y
Print Z to screen.

How many arithmetic 
operations when 
interpreted? When 
compiled with 
optimization?
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Compiling a C ProgramCompiling a C Program

 Entire mechanism is usually 
called the “compiler”

 Preprocessor
– macro substitution

– conditional compilation

– “source-level” transformations
 output is still C

 Compiler
– generates object file

 machine instructions

 Linker
– combine object files

(including libraries)
into executable image

C
Source and

Header Files

C Preprocessor

Compiler

Source Code
Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files
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CompilerCompiler

 Source Code Analysis
– “front end”
– parses programs to identify its pieces

 variables, expressions, statements, functions, etc.

– depends on language (not on target machine)

 Code Generation
– “back end”
– generates machine code from analyzed source
– may optimize machine code to make it run more efficiently

 Consider automated HTML generation…
– very dependent on target machine

 Symbol Table
– map between symbolic names and items
– like assembler, but more kinds of information
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A Simple C ProgramA Simple C Program
#include <stdio.h>
#define STOP 0

/* Function: main                                   */
/* Description: counts down from user input to STOP */
main()
{ /* variable declarations */

int counter;    /* an integer to hold count values */
int startPoint; /* starting point for countdown */

printf("Enter a positive number: ");
scanf("%d", &startPoint);  

/* output count down */
for (counter=startPoint; counter >= STOP; counter--)

printf("%d\n", counter);
}
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Preprocessor DirectivesPreprocessor Directives

 #include <stdio.h>
– Before compiling, copy contents of header file (stdio.h) into source code.

– Header files typically contain descriptions of functions and variables 
needed by the program.
 no restrictions -- could be any C source code

 #define STOP 0
– Before compiling, replace all instances of the string "STOP" with the string 

"0"

– Called a macro

– Used for values that won't change during execution, but might change if 
the program is reused.  (Must recompile.)

 Every C program must have exactly one function called main().
– Be careful with what you #include!

– main() determines the initial PC.
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Output with printfOutput with printf

 Variety of I/O functions in C Standard Library.
 Must include <stdio.h> to use them.

 printf: Can print arbitrary expressions, including formatted variables
printf("%d\n", startPoint - counter);

 Print multiple expressions with a single statement
 printf("%d %d\n", counter, startPoint -

counter);

 Different formatting options:
 %d decimal integer
 %x hexadecimal integer

 %c ASCII character
 %f floating-point number
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Examples of OutputExamples of Output

 This code:
 printf("%d is a prime number.\n", 43);
 printf("43 plus 59 in decimal is %d.\n", 43+59);
 printf("43 plus 59 in hex is %x.\n", 43+59);
 printf("43 plus 59 as a character is %c.\n", 43+59);

 produces this output:
 43 is a prime number.
 43 + 59 in decimal is 102.
 43 + 59 in hex is 66.
 43 + 59 as a character is f.
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Input with scanfInput with scanf

 Many of the same formatting characters are available for user input.

 scanf("%c", &nextChar);
– reads a single character and stores it in nextChar

 scanf("%f", &radius);
– reads a floating point number and stores it in radius

 scanf("%d %d", &length, &width);
– reads two decimal integers (separated by whitespace), stores the first one 

in length and the second in width

 Must use address-of operator (&) for variables being modified.
– We’ll revisit pass by reference/value in a future lecture
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Data TypesData Types

 Variables are used as names for data items.
 Each variable has a type, type qualifiers, and a storage class which tells 

the compiler how the data is to be interpreted (and how much space it 
needs, etc.).

 int counter;
 Basic data types: 

– Integral: int (at least 16 bits) Qualifiers: signed, unsigned, long
– Floating-point: float (at least 32 bits), double
– Character: char (at least 8 bits)
– Enumerated: enum hobbits {bilbo, frodo, samwise, pippen, merry}

 Storage class: automatic, static, register
 Derived data types: pointers, arrays, structures 
 Exact size can vary, depending on processor

– int is supposed to be "natural" integer size; 
– for LC-3, that's 16 bits -- 32 bits for most modern processors
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High level languages have rules that High level languages have rules that 
specify the data type of resultspecify the data type of result

 Addition/Subtraction: If mixed types, smaller type is "promoted" to 
larger.
– x + 4.3    answer will be float

 Division: If mixed type, the default result is a truncated signed integer
– For int x  = 5: ( x / 3 = = 1 ) is true!  Not 1.6!  Not 2! 1!

– For float f = 5:      ( f / 3 = = 1 ) is false!

– For int x = 5:         ( (float) x / 3 = = 1 ) is false!

 The rules can be overridden by typecasting the operands or result!
– the compiler does this for you automatically to match the destination 

type!

– int si  =  2.5 / 3        is 0

– float f =  2.5 / 3       is 0.833333 [Note automatic typecasting of 3]

 Without typecasting you are stuck with the limitations of the data type 
the compiler assigned for the storage/calculation of your intermediate 
value
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Variables and ScopeVariables and Scope

 Where are variable stored?  Where can they be accessed?  Why?
 All C variables are defined as being in one of two storage classes

– Automatic storage class  (on the stack, uninitialized)
– Static storage class (in the global memory area, initialized to 0)

 Compiler infers scope from where variable is declared unless specified
– programmer doesn't have to explicitly state (but can!)
– automatic int x;
– static int y;

 Global: accessed anywhere in program (default static)
– Global variable is declared outside all blocks

 Local: only accessible in a particular region (default automatic)
– Variable is local to the block in which it is declared
– block defined by open and closed braces { }
– can access variable declared in any "containing" block
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Allocating Space for VariablesAllocating Space for Variables

 Global data section
– All global variables stored here

(actually all static variables)

– R4 points to beginning (global pointer)

 Run-time stack
– Used for local variables

– R6 points to top of stack (stack pointer)

– R5 points to top frame on stack (frame 
pointer)

– New frame for each block
(goes away when block exited)

 Offset = distance from beginning
of storage area

– Global: LDR R1, R4, #4

– Local:   LDR R2, R5, #-3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6
R5
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Stack Data StructureStack Data Structure

 Abstract Data Structures
– are defined simply by the rules for inserting and extracting data

 The rule for a Stack is LIFO (Last In - First Out)
– Operations:

 Push (enter item at top of stack)
 Pop (remove item from top of stack)

– Error conditions:
 Underflow (trying to pop from empty stack)
 Overflow (trying to push onto full stack)

– We just have to keep track of the address of top of stack (TOS)
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A software stackA software stack

 Implemented in memory
– The Top Of Stack moves as new data is entered

 Here R6 is the TOS register, a pointer to the Top Of Stack
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ExampleExample

 #include <stdio.h>
 int itsGlobal = 0;

 main()
 {
 int itsLocal = 1;   /* local to main */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 {
 int itsLocal = 2;   /* local to this block */
 itsGlobal = 4;      /* change global variable */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }

 Output
 Global 0 Local 1

Global 4 Local 2
Global 4 Local 1
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Variables and Memory LocationsVariables and Memory Locations

 In our examples, a variable is always stored in memory.
– For each assignment, one must get the operands (possibly requiring memory 

loads), perform the operation, and then store the result to memory.

 Optimizing compilers try to keep variables allocated in registers.
– C allows the user to provide hints to the compiler

register int x; 

 Like the assembler, the compiler 

needs a symbol table

 In the assembler
– Identifiers (names) are labels

associated with memory addresses

 In the compiler
– Name, Type, Location, Scope

Compiler Symbol Table

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main
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Example: Compiling to LCExample: Compiling to LC--33

 #include <stdio.h>
 int inGlobal;

 main() {
 int inLocal;   
 int outLocalA;
 int outLocalB;

 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal++ & ~inGlobal;
 outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

 /* print results */
 printf("The results are: outLocalA = %d, outLocalB = %d\n",
 outLocalA, outLocalB);
 }

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main
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The stack frameThe stack frame

 Local variables are stored in a stack frame associated 
with the current scope 

– As we change scope, we effectively change both 
the top and the bottom of the stack

– R6 is the stack pointer – holds the address of the 
top of the stack

– R5 is the frame pointer – holds address
of the base of the current frame. 

 Symbol table “offset” gives the distance from 
the base of the frame.

– A new frame is pushed on the
run-time stack each time a block is entered.

– Because stack grows downward (towards memory
address x0000) the base is the highest address of the
frame, and variable offsets are negative.

outLocalB
outLocalA

inLocalR5

R6
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OperatorsOperators

 Programmers manipulate variables using the operators provided by the high-
level language.

 You need to know what these operators assume
– Function
– Precedence & Associativity
– Data type of result

 You are assumed to know all standard C/C++ operators, including bitwise ops:

Symbol Operation Usage
~ bitwise NOT ~x
<< left shift x << y
>> right shift x >> y
& bitwise AND x & y
^ bitwise XOR x ^ y
| bitwise OR x | y
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Control StructuresControl Structures

 If it can be done in “C” in must be able to be done in assembly

 Conditionals
– making a decision about which code to execute, based on evaluated 

expression

– if

– if-else

– switch

 Iteration
– executing code multiple times, ending based on evaluated expression

– while

– for

– do-while
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Implementing IFImplementing IF--ELSEELSE

int x,y,z;

….
if (x){

y++;
z--;

} else {
y--;
z++;

}

LDR  R0, R5, #0
BRz ELSE
; x is not zero
LDR  R1, R5, #-1  ; incr y
ADD  R1, R1, #1
STR  R1, R5, #-1
LDR  R1, R5, #02  ; decr z
ADD  R1, R1, #1
STR  R1, R5, #-2
JMP  DONE  ; skip else code
; x is zero

ELSE   LDR  R1, R5, #-1  ; decr y
ADD  R1, R1, #-1
STR  R1, R5, #-1
LDR  R1, R5, #-2  ; incr z
ADD  R1, R1, #1
STR  R1, R5, #-2

DONE   ...  ; next statement

condition

block_if block_else

T F
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SwitchSwitch

 switch (expression) {
case const1:
action1; break;

case const2:
action2; break;

default:
action3;

 }

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T
F

F

Alternative to long if-else chain.
Case expressions must be constant.
If break is not used, then case 
"falls through" to the next.
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Implementing WHILEImplementing WHILE

x = 0;
while (x < 10) {

printf(“%d ”, x);
x = x + 1;

}

AND  R0, R0, #0
STR  R0, R5, #0 ; x = 0
; test

LOOP   LDR  R0, R5, #0 ; load x
ADD  R0, R0, #-10
BRzp DONE
; loop body
LDR  R0, R5, #0 ; load x
...
<printf>
...
ADD  R0, R0, #1 ; incr x
STR  R0, R5, #0
JMP  LOOP   ; test again

DONE   ; next statement

test

loop_body
T

F
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Implementing FORImplementing FOR

for (i = 0; i < 10; i++)
printf(“%d ”, i);

; init
AND  R0, R0, #0
STR  R0, R5, #0 ; i = 0
; test

LOOP   LDR  R0, R5, #0 ; load i
ADD  R0, R0, #-10
BRzp DONE
; loop body
LDR  R0, R5, #0 ; load i
...
<printf>
...
; re-init
ADD  R0, R0, #1 ; incr i
STR  R0, R5, #0
JMP  LOOP   ; test again

DONE   ; next statement

init

test

loop_body

re-init

F

T
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Example: Compiling to LCExample: Compiling to LC--33

 #include <stdio.h>
 int inGlobal;

 main() {
 int inLocal;   
 int outLocalA;
 int outLocalB;

 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal++ & ~inGlobal;
 outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

 /* print results */
 printf("The results are: outLocalA = %d, outLocalB = %d\n",
 outLocalA, outLocalB);
 }

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main
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Example: Code GenerationExample: Code Generation

 ; main
 ; initialize variables

 ; inLocal = 5;  inGlobal = 3;

 AND R0, R0, #0
ADD R0, R0, #5  ; inLocal = 5
STR R0, R5, #0  ; (offset = 0)

AND R0, R0, #0
ADD R0, R0, #3  ; inGlobal = 3
STR R0, R4, #0  ; (offset = 0)
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Example (continued)Example (continued)

 ; first statement:
 ; outLocalA = inLocal++ & ~inGlobal;

LDR R0, R5, #0  ; get inLocal
ADD R1, R0, #1  ; increment
STR R1, R5, #0  ; store

LDR R1, R4, #0  ; get inGlobal
NOT R1, R1      ; ~inGlobal
AND R2, R0, R1  ; inLocal & ~inGlobal
STR R2, R5, #-1 ; store in outLocalA

; (offset = -1)
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Example (continued)Example (continued)

 ; next statement:
 ; outLocalB = (inLocal + inGlobal)

;             - (inLocal - inGlobal);

LDR R0, R5, #0  ; inLocal
LDR R1, R4, #0  ; inGlobal
ADD R0, R0, R1  ; R0 is sum
LDR R2, R5, #0  ; inLocal
LDR R3, R5, #0  ; inGlobal
NOT R3, R3
ADD R3, R3, #1
ADD R2, R2, R3  ; R2 is difference
NOT R2, R2      ; negate
ADD R2, R2, #1
ADD R0, R0, R2  ; R0 = R0 - R2
STR R0, R5, #-2 ; outLocalB (offset = -2)



6

31
Wright State University, College of Engineering
Dr .  Doom, Computer Science & Engineering

CEG 320/520
Comp.  Org. & Assemb ly

Practice problemsPractice problems

 10.3, 10.8, 12.1, 12.5


