Chapter 10/11/12/13

High Level Programming Languages
Variables and Operators
The runtime stack
Emphasis on how C-like languages are converted to LC-3 assembly

A High-Level Languages

o Gives symbolic names to values

— don’tneed to know which register or memory location
o Provides abstraction of underlying hardware

— operationsdo not depend on instruction set

— example: can write “a=b * c”, even though
LC-3 doesn’t have a multiply instruction

o Provides expressiveness

— use meaningful symbols that convey meaning

— simple expressions for common control patterns (if-then-else)
o Enhances code readability
o Safeguardsagainst bugs

— can enforce rules or conditions at compile-time or run-time

» Ifit can be specified in a high-level language then it MUST be do-able in
assembly!

ty, College of Engineering
nce & Enginesring

Compilation vs. Interpretation

» Differentways of translating high-level language GetW from the
© Interpretation keyboard

- interpreter = program that executes program statements X=W+W

- generally one line/command atatime Y=X+X

— limited processing Z=Y+Y

- easytodebug, make changes, view intermediate results Print Z to screen

- languages: BASIC, LISP, Perl, Java, Matlab, C-shell
e Compilation
- translatesstatementsinto machine language
does not execute, but creates executable program
- performs optimization over multiple
- change requires recompilation

can be harder to debug, since executed code may be
different

- languages: C, C++, Fortran, Pascal

How many arithmetic
operations when
interpreted? When
compiled with
optimization?

ty, College of Engineering 63
Science & Enginesring Comp. Org. & Assembly

wighttte Unive
EBT o oo omputer

Compilinga C Progra&s

o Entire mechanismis usually ‘

called the “compiler”
C Preprocessor

e Preprocessor
Compier

- macrosubstitution
— conditional compilation
Source Code
nalysis |,
Target Code [+
Synihesis

- “source-level” transformations
outputisstillC
o Compiler
— generates object file
machine instructions
o Linker
— combine object files
(including libraries)

into executable image !

Executable

mage
Wightstte Universiy Collgeof Enineering
TERETT | o Do Computer Stence & Engineering

Compiler

o Source Code Analysis
- “frontend”
— parsesprogramsto identify its pieces
variables, expressions, statements, functions, etc.
— dependson language (not on target machine)
o Code Generation
- “backend”
— generates machine code from analyzed source
— may optimize machine code to make it run more efficiently
Consider automated HTML generation...
very dependent on target machine
o Symbol Table
— map between symbolic names and items
— like assembler, but more kinds of information

ty, College of Engineering 3
Science & Enginesring Comp. Org. & Assembly

Wwighttte Unive
TEBT o oo Computer

A Simple C Program

#include <stdio.h>
#define STOP 0

/* Function: main */
/* Description: counts down from user input to STOP */
mainQ)
{ /* variable declarations */
int counter; /* an integer to hold count values */
int startPoint; /* starting point for countdown */

printf("Enter a positive number: ');
scanf("%d", &startPoint);

/* output count down */
for (counter=startPoint; counter >= STOP; counter--)
printf("%d\n", counter);
}

Wightstte Universiy Collgeof Enineering o
TERETT | o oo Computer Stence & Engineering Comp.0rg. & Assembly

Preprocessor Directives

o #include <stdio.h>
— Before compiling, copy contents of header file (stdio.h) into source code.
— Headerfiles typically contain descriptions of functions and variables
needed by the program.
no restrictions --could be any C source code
o #define STOP O
— Before compiling, replace all instances of the string "STOP" with the string

g

Called a macro
— Used for values that won't change during execution, but might change if
the program is reused. (Must recompile.)
o Every C program must have exactly one function calledmain().
— Becareful with what you #include!
— main() determines the initial PC.

Wight State University, Coll

rsiy. ol
TEBEI | o B Compute Shenes

ege of Engineering CEG320
&Engineering Comp. Org. & Assembly

Output with printf

Variety of I/0 functions in C Standard Library.
Mustinclude <stdio.h>to use them.

printf: Can print arbitrary expressions, including formatted variables
printf("%d\n", startPoint - counter);

Print multiple expressions with a single statement

. printf('%d %d\n", counter, startPoint -
counter);
» Different formatting options:
. Y%d decimal integer
. Y hexadecimal integer
. ‘¢ ASCII character
. T floating-point number
Wight tate University, College of Engineering

TERTT | o Doom Computer Stence & Engineering Comp. Org. &Asembly

Examples of Output

o Thiscode:

. printf(" s a prime number.\n", 43);

. printf('43 plus 59 in decimal -\n", 43+59);

. printf("43 plus 59 in hex is %x.\n", 43+59);

. printf("43 plus 59 as a character is %c.\n", 43+59);

o produces this output:

43 is a prime number.

43 + 59 in decimal is 102.
43 + 59 in hex is 66.

.
.
.
. 43 + 59 as a character is f.

Wight State University, College of Engineering

TERTT | o Boom Computer Stence & Engineering

Input with scanf

» Many of the same formatting characters are available for user input.

e scanf('%c', &nextChar);
- readsa single character and stores it in nextChar
o scanf("%f", &radius);
— readsa floating point number and stores it in radius
o scanf('%d %d", &length, &width);
— reads two decimal integers (separated by whitespace), stores the firstone
inlength and the second in width

o Must use address-of operator (&) for variables being modified.
— We'llrevisit pass by reference/value in a future lecture

Wightstte Universiy Collgeof Enineering ceo0
TERETT | o Do Computer Stence & Engineering Comn

Data Types

Variables are used as names for data items.
Eachvariable has a type, type qualifiers, and a storage class which tells
the compiler how the data is to be interpreted (and how much space it
needs, etc.).
. int counter;
Basic data types:
— Integral: int (at least 16 bits) Qualifiers: signed, unsigned, long
— Floating-point: float (at least 32 bits), double
— Character: char (at least 8 bits)
— Enumerated: enum hobbits {bilbo, frodo, samwise, pippen, merry}
Storage class: automatic, static, register
Derived data types: pointers, arrays, structures
o Exactsize can vary, depending on processor
— intis supposed to be "natural” integer size;
— forlLC-3, that's 16 bits -- 32 bits for most modern processors

llege of Engineering
&Engineering

Wightstte Univer
EBT | o G Compute

1

High level languages have rules that
specify the data type of result

Addition/Subtraction: If mixed types, smaller type is "promoted" to
larger.
- x + 4.3 answer will be float
Division: If mixed type, the default result is a truncated signed integer
— Forintx =5: (x/3==1)istrue! Not1.6! Not 2! 1!
— Forfloatf=5 (f/3==1)isfalse!
— Forintx=5: ((float)x/3==1)is false!
The rules can be overridden by typecasting the operands or result!
— the compiler does this for you automatically to match the destination
type!
— intsi = 25/3 is0
— floatf= 25/3 is0.833333 [Note automatic typecasting of 3]
Without typecasting you are stuck with the limitations of the data type

the compiler assigned for the storage/calculation of your intermediate
value

ege of Engineering CcEG320

Wightstte Universiy
TERETT | o oo Computer Stence & Engineering Comp.on

Variables and Scope

o Where are variable stored? Where can they be accessed? Why?
o AlIC variables are defined as being in one of two storage classes
— Automatic storage class (on the stack, uninitialized)
— Static storage class (in the global memory area, initialized to 0)
o Compiler infers scope from where variable is declared unless specified
— programmer doesn't have to explicitly state (but can!)
— automaticint x;
— staticinty;
o Global: accessed anywhere in program (default static)
- Globalvariable is declared outside all blocks
o Local: onlyaccessiblein a particular region (default automatic)
— Variable s local to the block in which it is declared
— block defined by open and closed braces { }
— can access variable declared in any "containing” block

fEngineering

Allocating Space for Variables

* Global data section 0x0000
— Allglobal variables stored here

o Run-timestack

o Offset=distance from beginning

(actually all static variables)

- R4 points to beginning (global pointer) instructions

— Used for local variables
— R6 points to top of stack (stack pointer)
— R5 points to top frame on stack (frame
pointer)
- New frame for each block
(goes away when block exited)

run-time
stack

- Global: LDR R1, R4, #4 OXEFFF _

= local IDR R2, RO, #-3

of storage area

CIERETY | o G Computer Shenee & engineing Comp.org &Asenbly 14
o Implemented in memory
— The Top Of Stack moves as new data is entered
Here R6 is the TOS register, a pointer to the Top Of Stack
x3FFB i x3FFB HHEI x3FFB PYREY x3FFB il
X3FFC| 1N x3FFC| /17141 X3FFC 12 |J5P xaFFC 12
X3FFD | 11N x8FFD | /11id) x3FFD 5 *3FFD 5
XIFFE| 1110 XAFFE| /1140 X3FFE 31 X3FFE 31 L=
X3FFF| [x3FFF 18 42" xaFFF 18 X3FFF 18
deP
*4000 J Re ‘ xaFFF | RS xaFFc [RE x3FFE A6
(a) Inttial state (b) After one push (c) After three pushes (d) After two pops.

TERETT | o Do Computer Stence & Engineering

Wright State Univer llege of Engineering

ceG
Comp. Org. & Assembly 16,

IR | 51 i ComperScenc & Enginearng Comp.org 13
o Abstract Data Structures

— are defined simply by the rules for inserting and extracting data
o The rule for a Stack is LIFO (Last In - First Out)

— Operations:

Push (enteritem at top of stack)
Pop (remove item from top of stack)

- Error conditions:

Underflow (trying to pop from empty stack)
Overflow (trying to push onto full stack)

— We just have to keep track of the address of top of stack (TOS)
CIERETY | o G Computer Shenee & engineing Comp.or9 15
o #include <stdio.h>
e int itsGlobal = 0;

o mainQ)
.
) int itsLocal = 1; Vil | 1 to main */
. printf('Global %d Local %d\M, itsGlobal, itsLocal);
.
{
) int itsLocal = 2; /* loca block */
. itsGlobal = 4; /* change gl fable *
. printf('Global %d Local %d\n", itsGiQbal H
.

¥
. printf('Global %d Local %d\n", itsGlobal H
.

e Output
e Global 0 Local 1
Global 4 Local 2
Global 4 Local 1
CIERETY | o G Computer Shenee & engineing Comp.or9 17

Variables and Memory Locations

Inour examples, a variable is always stored in memory.

- Foreach one mustget the op (possibly requiringmemory

loads), perform the operation, and then store the result to memory.

Optimizing compilers try to keep variables allocated in registers.

— Callows the user to provide hints to the compiler

register int x;
Like the assembler, the compiler
needs a symbol table

Compiler Symbol Table

e Inthe assembler Name Type | Offset | Scope
- \denpflers (rTames) arelabels inGlobal int 0 global
associated with memory addresses
® Inthe compiler inLocal int 0 main
— Name, Type, Location, Scope outLocalA int 1 main
outLocalB int -2 main
CIERETY | o S Computer Shenee & enginering Comp.org &Asenbly 18

Example: Compiling to LC-3

e e o e ot | oo
) inGlobal int 0 global

: mam?iﬁmca. - inLocal int 0 main

o t outlocalA; outLocalA int -1 main

¢ int outlocalB; outLocalB int -2 main

. inLocal

. inGlobal = 3;

. /* perform calculations */
. outLocalA = inLocal++ & ~inGlobal;
outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

. /* print results */

. printf("'The results are: outLocalA = %d, outLocalB = %d\n",
. outLocalA, outLocalB);

° 3

The stack frame

o Localvariables are stored in a stack frame associated
with the current scope
— Aswe change scope, we effectively change both
the top and the bottom of the stack
— R6is the stack pointer — holds the address of the
top of the stack
— R5is the frame pointer — holds address

of the base of the current frame. R6— outLocalB
» Symbol table “offset” gives the distance from outLocalA
the base of the frame. R5— inLocal

— Anew frameis pushed on the
run-time stack each time a block is entered.

— Because stack grows downward (towards memory
address x0000) the base is the highest address of the!

frame, and variable offsets are negative.

llege of Engineer

Weighttate Universty Cole
I | oy oo Computer Shonce & Engine

CEG 3207521
Comp. Org. & Assembly

Control Structures

o Ifit can be done in “C” in must be able to be done in assembly
« Conditionals
— making a decision about which code to execute, based on evaluated
expression
- if
- if-else
- switch
o lteration
— executing code multiple times, ending based on evaluated expression
- while
- for
- do-while

Wright State Univer

TEEIT | oy oo Computer Stonce & Engines

CEG 3207521
Comp. Org. & Assembly

CERBETY | b oo Computer Sionce &g Comp.org & Assembly 19
Operators
* Programmers manipulate variables using the operators provided by the high-
level language.
® Youneed to know what these operators assume
- Function
— Precedence & Associativity
— Datatype of result
® Youare assumed to know all standard C/C++ operators, including bitwise ops:
Symbol Operation Usage
~ bitwise NOT ~X
<< leftshift X <<y
>> right shift X >>y
& bitwise AND X &Yy
n bitwise XOR XNy
1 bitwise OR x|y
COERBETY | b oo Computer Sonce &g Comp.org & Asembly 21
Implementing IF-ELSE
intx,y,z; LDR RO, R5, #0
BRz ELSE
; X is not zero
if (x){ LDR R1, R5, #-1 incry
yH ADD R1, R1, #1
z--; STR R1, R5, #-1
Yelse { LDR R1, R5, #02 ;decr z
ADD R1, R1, #1
¥ STR RL, R5, #-2
o l JMP DONE ; skip else code
} i X is zero
T @ F ELSE LDR RL, R5, #-1 ;decry
ADD R1, R1, #-1
STR R1, R5, #-1
LDR R1, R5, #-2 ;incrz
ADD R1, R1, #1
STR R1, R5, #-2
DONE——eer—s ot
COERBETY | b oo Computer Soncs &g Comp.org & Assembly 23

Switch

o switch (expression) { evaluate
caseconstl: expression
actionl; break;
case const2: -
action2; break;
default: E T
action3; H

° 3 @ action2

T
E

Alternative to long if-else chain.
Case expressions must be constant.
If break is not used, then case
“falls through" to the next.

Wright State Univer llege of En

OB 4 or. Doom, Computer cience & Engineering

CEG 3207521
Comp. Org. & Assembly

24|

Implementing WHILE

X=0; AND RO, RO, #0
while (x < 10) { STR RO, R5, #0 :x=0
intf(“%d *, X); ; test
printit%d =, X); LOOP LDR RO, R5, #0 :load x
X=x+1; ADD RO, RO, #-10
} BRzp DONE
; loop body

LDR RO, R5, #0 ;load x
@ <printf>

ADD RO, RO, #1 ;incrx

STR RO, R5, #0

JMP LOOP ; test again
DONE ; next statement

loop_body]

Wight st Unive <ot Engineering ceos20
TERETT | o oo Computer Stence & Engineering Comp.Org &psenbly 25

Implementing FOR

for (i = 0; i < 10; i++) s init
printf(“%d ”, 1); AND RO, RO, #0
STR RO, R5, #0 ;i=0
; test
LOOP LDR RO, R5, #0 ;load i
l ADD RO, RO, #-10
- BRzp DONE
; loop body
LDR RO, R5, #0 ;load i
@ <printf>
T ; re-init
ADD RO, RO, #1 ;incri
STR RO, R5, #0

JMP LOOP ; test again

Example: Compiling to LC-3

o #include <stdio.h>

« int inGlobal: Name Type | Offset | Scope
inGlobal int 0 global

e main() { - - -

. int inLocal; inLocal int 0 main

e int outlocalA; outLocalA int -1 main

N int outlocalB; outLocalB int -2 main

. inLocal 5;

. inGlobal 3;

. /* perform calculations */

. outLocalA = inLocal++ & ~inGlobal;

. outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

. /* print results */

) printf("'The results are: outLocalA = %d, outLocalB = %d\n",

. outLocalA, outLocalB);

<3}

RT3 i Comper Soeni & ninesring Comp.org &asenbly 27

Example (continued)

e ; first statement:
e ; outLocalA = inLocal++ & ~inGlobal;

LDR RO, R5, #0 ; get inLocal
ADD R1, RO, #1 ; increment
STR R1, R5, #0 ; store

LDR R1, R4, #0 ; get inGlobal

NOT R1, R1 ; ~inGlobal

AND R2, RO, R1 ; inLocal & ~inGlobal

STR R2, R5, #-1 ; store in outLocalA
(offset = -1)

e of Engineering
Engineering

ansenvly 29

Wight st nive
T 5 o G

re-init DONE ; next statement
TR o 5 B, Compute Stenee & Engineering Comp 01 @nsenbly 26
Example: Code Generation
e ; main
e ; initialize variables
e ; inLocal = 5; inGlobal = 3;
° AND RO, RO, #0
ADD RO, RO, #5 ; inLocal =5
STR RO, R5, #0 ; (offset = 0)
AND RO, RO, #0
ADD RO, RO, #3 inGlobal = 3
STR RO, R4, #0 (offset = 0)
CIERETY | o G Computer Shenee & engineing Comp 01 @nembly 28
Example (continued)
e ; next statement:
e ; outLocalB = (inLocal + inGlobal)
H - (inLocal - inGlobal);
LDR RO, R5, #0 ; inLocal
LDR R1, R4, #0 ;
ADD RO, RO, R1
LDR R2, R5, #0 ;
LDR R3, R5, #0 ; inGlobal
NOT R3, R3
ADD R3, R3, #1
ADD R2, R2, R3 ; R2 is difference
NOT R2, R2 ; negate
ADD R2, R2, #1
ADD RO, RO, R2 ; RO = RO - R2
STR RO, R5, #-2 ; outLocalB (offset = -2)
CERTT | o oo Comp erginearing 30

Practice problems

» 10.3,10.8,12.1,12.5

wightste
ET b e

CEG320/520
Comp. Org. & Assembly

31

