
1

Chapter 9Chapter 9

Subroutines and TRAPs

Privileged Instructions
 TRAP Routines
 Subroutines

2
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Privileged InstructionsPrivileged Instructions

 There are several instructions that are best executed by a supervisor program (OS)
rather than a user program:

– I/O instructions
– Interacting with system/device (memory-mapped) registers
– Resetting the clock
– Halt

i.e. instructions where one program can affect the behavior of another.

 Most modern CPUs are designed to enforce at least two modes of operation:
– User Mode
– Privileged Mode (aka. supervisor, kernel, monitor mode)

 Only the supervisor program (OS) can execute privileged instructions.

 But, how do we ALLOW user programs to access privileged functionality?
 There are two issues to address: Policy and Mechanism

3
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

TRAP InstructionsTRAP Instructions

 TRAPs insulate critical tasks from the user
– with or without privilege enforcement

 The TRAP mechanism:
– A set of trap service routines or TSRs (part of the CPU OS)

 We have already seen the basic I/O SRs

– A table of the starting addresses of these service routines
 Located in a pre-defined block of memory …
 … called the Trap Vector Table or System Control Block
 In the LC-3: from x0000 to x00FF (only 5 currently in use)

– The TRAP instruction
 which loads the starting address of the TSR into the PC

– Return link
 from the end of the TSR back to the original program.

4
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

LCLC--3 TRAP Routines3 TRAP Routines

– GETC (TRAP x20)
 Read a single character from KBD.
 Write ASCII code to R0[7:0], clear R0[15:8].

– OUT (TRAP x21)
 Write R0[7:0] to the monitor.

– PUTS (TRAP x22)
 Write a string to monitor (address of first character of

string is in R0).

– IN (TRAP x23)
 Print a prompt to the monitor and read a single character

from KBD.
 Write ASCII code to R0[7:0], clear R0[15:8], echo character

to the monitor.

– HALT (TRAP x25)
 Print message to monitor & halt execution.

– PUTSP (TRAP x24)
 Print packed string to monitor (address in R0)

5
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

TRAP InstructionsTRAP Instructions

 TRAP: A special instruction
– A form of subroutine call used to invoke a service routine.

– If privilege is being enforced, it switches the execution to privileged mode, and
reverts back to user mode when the

TSR completes.
 R7  (PC) ; the current PC is stored in R7

 PC  Mem[Zext(IR[7:0])] ; the 8-bit trap vector is loaded to the PC

 RET – return instruction

– The TSR ends with the RET instruction
 PC  (R7) ; the program now picks up where it left off

1 1 1 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 trapvector8

6
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

TRAP ExampleTRAP Example

 Trap Vector Table
– Or System Control BLock
– In LC-3

 8 bits specify one of 256 locations
(x0000 to x00FF)

 The location contains the address of
the TRAP service routine.

 TRAP & Interrupts
– Similar mechanisms
– A TRAP is an instruction (event

internal to a program).
– An interrupt is external to a program

(from an I/O device)
– Both invoke a supervisor service

routine.

2

7
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Character Output TSR (OUT)Character Output TSR (OUT)

01 .ORIG X0430 ; System call starting address
02 ST R1, SaveR1 ; R1 will be used for polling
03
04 ; Write the character
05 TryWrite LDI R1, DSR ; Get status
06 BRzp TryWrite ; bit 15 = 1 => display ready
07 WriteIt STI R0, DDR ; Write character in R0
08
09 ; Return from TRAP
0A Return LD R1, SaveR1 ; Restore registers
0B RET ; Return (actually JMP R7)
0C DSR .FILL xFE04 ; display status register
0D DDR .FILL xFE06 ; display data register
0E SaveR1 .BLKW 1
0F .END

ALSO
01 .ORIG x0021
02 .FILL x0430

8
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

HALT TSRHALT TSR

 Clears the RUN latch MCR[15]:
01 .ORIG XFD70 ; System call starting address
02 ST R0, SaveR0 ; Saves registers affected
03 ST R1, SaveR1 ; by routine
04 ST R7, SaveR7 ;
05
06 ; Print message that machine is halting
07 LD R0, ASCIINewLine
08 TRAP x21 ; Set cursor to new line
09 LEA R0, Message ; Get start of message
0A TRAP x22 ; and write it to monitor
0B LD R0, ASCIINewLine
0C TRAP x21
0D
0E ; Clear MCR[15] to stop the clock
0F LDI R1, MCR ; Load MC register to R1
10 LD R0, MASK ; MASK = x7FFF (i.e. bit 15 = 0)
11 AND R0, R1, R0 ; Clear bit 15 of copy of MCR
12 STI R0, MCR ; and load it back to MCR

9
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

HALT TSR (cont.)HALT TSR (cont.)

13 ; Return from the HALT routine
14 ; (how can this ever happen, if the clock is stopped on line 12??)
15 ;
16 LD R7, SaveR7 ; Restores registers
17 LD R1, SaveR1 ; before returning
18 LD R0, SaveR0
19 RET ; JMP R7
1A
1B ; constants
1C ASCIINewLine .FILL x000A
1D SaveR0 .BLKW 1
1E SaveR1 .BLKW 1
1F SaveR7 .BLKW 1
20 Message .STRINGZ “Halting the machine”
21 MCR .FILL xFFFE
22 MASK .FILL x7FFF
23 .END

10
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Saving & restoring registersSaving & restoring registers

 Protect your values! High-level “Scope” rules don’t apply at low-level
– Any routine may change values currently stored in any register/memory.

 Caller Save
– Sometimes the calling program (“caller”) knows what needs to be

protected, so it saves the endangered register before calling the
subroutine.
 e.g. in the HALT routine, which has itself been called by another program, the

caller knows that it has precious cargo in R7, which will be overwritten by the
TRAP instructions (why??), so it saves R7 to memory at the start of the routine,
and restores it from memory before returning to the main program.

 Callee save
– Other times it will be the called program (“callee”) that knows what

registers it will be using to carry out its task.
 again in the HALT routine, R0 and R1 are used as temporary working space to

hold addresses, masks, ASCII values, etc., so they are both saved to memory at
the start of the routine, and restored from memory before returning to the
main program.

11
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

SubroutinesSubroutines

 Used for
– Frequently executed code segments

– Library routines

– Team-developed systems
 in other words, all the same reasons for using subroutines in higher level

languages, where they may be called functions, procedures, methods, etc.

 Requirements:
– Pass parameters and return values, via registers or memory.

– Call from any point & return control to the same point.

– First, we’ll pass values via registers. (Easy, but many limitations)

– Later, we’ll pass values via memory. (Uses memory as a “stack”, powerful!)

12
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

The Call / Return mechanismThe Call / Return mechanism

 The figure illustrates the execution of a program comprising code
fragments A, W, X, Y and Z.

– Note that fragment A is repeated several times, and so is
well suited for packaging as a subroutine:

3

13
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Jump to Subroutine : JSR/JSRRJump to Subroutine : JSR/JSRR

 A = IR[11] specifies
the addressing mode

 JSR: jump to subroutine (PC-Relative), IR[11] = 1
– R7  (PC) i.e. PC is saved to R7

– PC  (PC) + Sext(IR[10:0]) i.e PC-Relative addressing,

– using 11 bits => label can be within +1024 / -1023 lines of JSR instruction

 JSRR: jump to subroutine (relative base+offset), IR[11] = 0:
– R7  (PC) i.e. PC is saved to R7
– PC  (BaseR) i.e Base+Offset addressing, with offset = 0

0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSR(R) A
1 Address eval. bits

0 1 0 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSR(R) A
0 BaseR 0 0 0 0 0 0

14
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Subroutine call exampleSubroutine call example

; Calling program

.ORIG x3000

LD R1, num1

LD R2, num2

JSR multi

ST R3, prod

HALT

;

; Input data & result

num1 .FILL x0006

num2 .FILL x0003

prod .BLKW 1

; Subroutine multi
; Multiply 2 positive numbers
; Parameters:
; In: R1, R2; Out: R3
;
multi AND R3, R3, #0

ADD R4, R1, #0
BRz zero

loop ADD R3, R2, R3
ADD R1, R1, # -1
BRp loop

zero RET
.END

Notice any undesirable side-effects?

15
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Library RoutinesLibrary Routines

 Library
– A set of routines for a specific domain application.

– Example: math, graphics, GUI, etc.

– Defined outside a program.

 Library routine invocation
– Labels for the routines are defined as external. In LC-3:

.External Label

– Each library routine contains its own symbol table.

– A linker resolves the external addresses before creating the executable
image.

16
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Linking multiple filesLinking multiple files

17
Wright State University, College of Engineering
Dr. Doom, Computer Science & Engineering

CEG 320/520
Comp. Org. & Assembly

Practice ProblemsPractice Problems

 9.2, 9.7, 9.10, 9.13, 9.15

