

01		ORIG	X0430	; System call starting address
02		ST	R1, SaveR1	; R1 will be used for polling
03		•.	ni, our oni	, it in be about of poining
04	: Write th	ne charao	ter	
05	TryWrite	LDI	R1. DSR	: Get status
06		BRzp	TryWrite	; bit 15 = 1 => display ready
07	Writelt	STI	RÓ, DDR	Write character in R0
08				
09	; Return	from TR/	AP	
0A	Return	LD	R1, SaveR1	; Restore registers
0B		RET		; Return (actually JMP R7)
0C	DSR	.FILL	xFE04	; display status register
0D	DDR	.FILL	xFE06	; display data register
0E	SaveR1		1	
0F		.END		
ALSO				
01		ORIG	x0021	
02		FILL	x0430	

		HALT TS	DR
	RUN latch MC		
01	.ORIG	XFD70	; System call starting address
02	ST	R0, SaveR0	; Saves registers affected
03	ST	R1, SaveR1	; by routine
04	ST	R7, SaveR7	;
05			
		that machine is h	
07	LD	R0, ASCIINewL	ine
08	TRAP	x21	; Set cursor to new line
09	LEA	R0, Message	; Get start of message
0A	TRAP	x22	; and write it to monitor
0B	LD	R0, ASCIINewL	ine
0C	TRAP	x21	
0D			
		o stop the clock	
0F	LDI	R1, MCR	; Load MC register to R1
10	LD	R0, MASK	; MASK = x7FFF (i.e. bit 15 = 0
11	AND	R0, R1, R0	; Clear bit 15 of copy of MCR
12	STI	R0, MCR	; and load it back to MCR

A = IR[11] specifies	15141312 11 10 9 8 7 6 5 4 3 2 1 0
the addressing mode	0 1 0 0 1 Address eval. bits
JSR: jump to subroutine (PC- - R7 ← (PC)	JSR(R) A -Relative), IR[11] = 1 i.e. PC is saved to R7
()	i.e PC-Relative addressing,
.,,	e within +1024 / -1023 lines of JSR instruction
	15141312 11 10 9 8 7 6 5 4 3 2 1
	01000 BaseR 00000
JSRR: jump to subroutine (re	JSR(R) A elative base+offset), IR[11] = 0:
– R7 ← (PC) i.e. F	PC is saved to R7

Colling	program		; Subrou	itine multi	
; Calling program .ORIG x3000		; Multiply 2 positive numbers			
		; Parameters:			
	LD	R1, num1	; In: R1,	R2; Out: R	23
	LD	R2, num2	;		
	JSR	multi	multi	AND	R3, R3, #0
	ST	R3, prod		ADD	R4, R1, #0
	HALT			BRz	zero
;			loop	ADD	R3, R2, R3
; Input data & result				ADD	R1, R1, # -1
num1	FILL	x0006		BRp	loop
num2	FILL	x0003	zero	RET	
				.END	
prod	.BLKW	1			able side-effects?

Practice Problem	IS
9.2, 9.7, 9.10, 9.13, 9.15	
Wright State University, College of Engineering Dr. Doom, Computer Science & Engineering	CEG 320/520 Comp. Org. & Assembly 17