Base 10 Number Representation
- Natural representation for human transactions

Binary
- Hard to implement electronically
- Hard to store
- Hard to transmit

To transform a into as 11.100000000000000...

Reliably transmitted on noisy and inaccurate wires

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

Examples
- Represent 3.5 as 1.0011001100110011...
- Binary floating point number cannot exactly represent 1.20

Leading bit is the sign bit
- Transformation
 - To transform a into -a, invert all bits in a and add 1 to the result

Range is: $-2^{N-1} < i < 2^{N-1} - 1$

Tmin = $2^{N-1} - 1$

Tmax = $2^{N-1} - 1$

Advantages:
- Operations need not check the sign
- Only one representation for zero
- Efficient use of all the bits

Problems:
- How do we do addition/subtraction?
- We have two numbers for zero (+/-)?
Manipulating Binary numbers - 1

- Binary to Decimal conversion & vice-versa
 - A 4-bit binary number $A = a_3a_2a_1a_0$ corresponds to:

 $a_2*2^2 + a_1*2^1 + a_0*2^0$.

 - A decimal number can be broken down by iteratively determining the highest power of two that "fits" in the number.

- Overflow
 - If we add the two (2's complement) 4 bit numbers representing 7 and 5 we get:

 $0111 + 0101 = 10000$.

 - We have overflowed the range of 4 bit 2's comp. (-8 to +7), so the result is invalid.

- X86 & Patel, Chapter 2:

 - Decide if the whole number fits in the number:

 $a_2*2^2 + a_1*2^1 + a_0*2^0$.

 - Note that if we add 16 to this result we get back 16.

- In general, if the sum of two positive numbers produces a negative result, or vice versa, an overflow has occurred, and the result is invalid in that representation.

CS Reality #1

- The first place where the underlying hardware abstraction can’t be treated as a magic black box results in the need for data types.
- You’ve got to understand binary encodings.

- Can x = 20,000,000,000?

- Assume machine with 32 bit word size, two’s complement integers.
- For each of the following C++ expressions, either:

 - Argue that is true for all argument values.

 - Give example where not true.

- Problems

 - Patt & Patel, Chapter 2:

 2.4, 2.8, 2.10, 2.11, 2.17, 2.21

C++ Integer Puzzles

- Assume machine with 32 bit word size, two’s complement integers.
- For each of the following C++ expressions, either:

 - Argue that is true for all argument values.

 - Give example where not true.

- Initialization

- Unsigned & Signed int’s: Yes!

- Float’s: Yes!

- Hex and other special characters vary

- Representing Strings

 - Strings in C/C++

 - Represented by array of characters

 - Each character encoded in ASCII format

 - Standard 7-bit encoding of character set

 - Other encodings exist, but uncommon

 - Uni1616 16-bit variant of ASCII that includes characters for non-English alphabets.

 - Character 'T' has code 54.

 - Hex: 160000 = 65

 - Strings are really just arrays of bytes!

 - How can we represent numbers using bits?

 - "Hey, how do I know it’s a string in the first place?"
Real numbers

- Most numbers are not integer!
- Range:
 - The magnitude of the numbers we can represent is determined by how many bits we use.
 - E.g. with 32 bits, the largest number we can represent is about 2^{31}, far too small for many purposes.
- Precision:
 - The exactness with which we can specify a number.
 - E.g. a 32-bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal representation.
- Our decimal system handles non-integer real numbers by adding yet another symbol: the decimal point (.) to make a fixed point notation:
 - E.g. 3.45678 $\approx 3.10^1 + 4.10^{-1} + 5.10^{-2} + 6.10^{-3} + 7.10^{-4} + 8.10^{-5}$
- The floating point, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed.

Real numbers in a fixed space

- What if you only have 8 digits to represent a real number?
- Do you prefer...
 - A low-precision number with a large range?
 - Or a high-precision number with a smaller range?

Wouldn’t it be nice if we could “float” the decimal point to allow for either case?

Scientific notation

- In binary, we only have 0 and 1, how can we represent the decimal point?
- In scientific notation, it’s implicit. In other words:
 - $4250000 = 4.25 \times 10^6$
 - $42.5 = 4.25 \times 10^1$
 - $4.25 = 4.25 \times 10^0$
- We can represent any number with the decimal point after the first digit by “floating” the decimal point to the left (or right)
 - 0.0000125 = 1.25×10^{-5}

Real numbers in binary

- We mimic the decimal floating point notation to create a “hybrid” binary floating point number:
 - We first use a “binary point” to separate whole numbers from fractional numbers to make a fixed point notation:
 - E.g. 25.75 = $1.210^3 + 0.10^2 = 1.210^3 + 0.10^2 = 11001.110 = 10101.110$
 - We then “float” the binary point:
 - 00011001.110 => 1.1001110 x 2
 - Now we have to express this without the extra symbols (e.g., 2, .)
 - By convention, we divide the available bits into three fields: sign, mantissa, exponent

IEEE-754 fp numbers – 32 bit “float”

<table>
<thead>
<tr>
<th>32 bits</th>
<th>8 bits</th>
<th>23 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>s signed</td>
<td>e biased exp.</td>
<td>f fraction</td>
</tr>
</tbody>
</table>

N = (-1)^s \times 1.fraction \times 2^{(biased exp. - 127)}

IEEE-754 fp numbers - example

- Example:
 - 25.75 \Rightarrow 00011001.110 \Rightarrow 1.10101 x 2^3
 - -4.125 \Rightarrow 10101100000000000000000 \Rightarrow -1.000111110 x 2^-3
 - vs: 50.1101110010000000000000 \Rightarrow +55.1E30000

Special values represented by convention:

- Infinity (+ and –): exponent = 255 (11111111) and mantissa = 0
- NaN (not a number): exponent = 255 and mantissa \neq 0
- Zero (0): exponent = 0 and mantissa = 0
- Not a special case: fraction is in-de-normalized, i.e., no leading 1
IEEE-754 fp numbers – 64-bit “double“

- **Double** precision (64-bit) floating point

<table>
<thead>
<tr>
<th>1</th>
<th>11 bits</th>
<th>52 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>s biased exp.</td>
<td>fraction</td>
<td></td>
</tr>
</tbody>
</table>

N = (-1)^s \times 1.\text{fraction} \times 2^{(\text{biased exp.} – 1023)}

- **Range & Precision:**
 - 32-bit:
 - mantissa of 23 bits + 1 ➞ approx. 7 digits decimal
 - \(2^{-1022} \gg \text{approx.} \ 10^{-38}\)
 - 64-bit:
 - mantissa of 52 bits + 1 ➞ approx. 15 digits decimal
 - \(2^{-1022} \gg \text{approx.} \ 10^{-306}\)

Floating point in C/C++

- **C Guarantees Two Levels**
 - **float** single precision
 - **double** double precision

- **Conversions**
 - Casting between **int**, **float**, and **double** changes numeric values
 - Double or float to int:
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range
 - Generally saturates to **TMin** or **TMax**
 - int to double:
 - Exact conversion, as long as int has \(\leq 53\) bit word size
 - int to float:
 - Will round according to rounding mode

Floating point puzzles in C++

```cpp
int x = ...;
float f = ...;
double d = ...;

' x == (int)(float) x
' x == (int)(double) x
' f == (float)(double) f
' d == (float) d
' f = -(f);
' 2/3 == 2/3.0
' d < 0.0 ➞ (d*2 < 0.0)
' d + d == 0.0
' (d+f)== f
```

Floating point number line

- 32 bits can represent \(2^{32}\) unique values
- How are those values distributed differently between integers and floats?
- What are the implications?

Ariane 5

- Payload rocket
- 7 billion (Euro) in design alone
- Danger:
 - Computed horizontal velocity as floating point number
 - Converted to 16-bit integer
 - Worked OK for Ariane 4
 - Overflowed for Ariane 5
 - same software
- Result:
 - Exploded 37 seconds after liftoff
 - Cargo worth $500 million
Other Data Types

- Other numeric data types
 - e.g. BCD
- Bit vectors & masks
 - sometimes we want to deal with the individual bits themselves
- Logic values
 - True (non-zero) or False (0)
- Instructions
 - Output as "data" from a compiler
- Misc
 - Graphics, sounds, ...

Practice Problems

- Patt & Patel
 - 2.39, 2.40, 2.41, 2.42, 2.56