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1. I

To explain the problem and results in this paper we begin describing the re-

flector problem. This problem recently received great interest and originates in
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engineering in the study of reflecting surfaces to reshape electromagnetic radia-

tion in a prescribed manner. It can be described as follows. Suppose that Ω,Ω∗ are

two domains of the unit sphere Sn−1 inRn, and light emanates from the point O in

an isotropic media with intensity f (x) for x ∈ Ω . The reflector problem consists

in finding a perfectly reflecting surface R, parameterized by a polar expression

ρ(x)x for x ∈ Ω, such that all rays reflected byR have directions in Ω∗, and the pre-

scribed illumination intensity received in the direction m ∈ Ω∗ is f ∗(m). The PDE

governing this problem is an equation of Monge-Ampère type on Ω ⊂ Sn−1, see

[GW98], and progress has been made concerning existence, uniqueness, and regu-

larity of solutions. See for instance, [Wan96], [Wan04], [OG03], [CO94], [CGH06],

and references therein. The reflector problem in anisotropic media is discussed in

[CH06].

The problem considered in this paper concerns refraction and appears in con-

nection with the synthesis of refracting surfaces capable of reshaping the intensity

of light beam. Mathematically the refractor problem is formulated as follows. Let

n1 and n2 be the indexes of refraction of two homogeneous and isotropic media

I and II, respectively. Suppose that from a point O inside medium I light em-

anates with intensity f (x) for x ∈ Ω . We want to construct a refracting surface

R parameterized as R = {ρ(x)x : x ∈ Ω}, separating media I and II, and such that

all rays refracted by R into medium II have directions in Ω∗ and the prescribed

illumination intensity received in the direction m ∈ Ω∗ is f ∗(m). This implies the

existence of a lens refracting light beams in a prescribed way, see Remark 4.8.

To the best of our knowledge there have been no results for this problem, and it is

our purpose in this paper to deal with the question of existence and uniqueness of

solutions up to dilations. To tackle the problem, we first find surfaces that refract

all light rays emanating from a point O into a fix direction; we say that these

surfaces have the uniform refraction property. Using these surfaces and energy

conservation, we then formulate the concept of weak solution to the refractor

problem, and next establish existence and uniqueness converting the problem
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into an optimal mass transfer problem from Ω to Ω∗ with a suitable cost function

according with the value of κ = n2/n1.

The organization of the paper is as follows. In Section 2, we review the Snell law

of refraction in vector form and discuss surfaces having the uniform refraction

property. In Section 3 we consider the refractor problem in case κ < 1. Section

4 discusses the refractor problem when κ > 1. Finally, in Section 5 we set up

the differential equation corresponding to the refractor problem and check the

validity of a condition introduced by Ma, Trudinger and Wang in [MTW05].

2. S     

We recall here the physical law of refraction and find the surfaces having the

uniform refraction property. It is well known that any paraboloid of revolution

reflects all rays of light emitted from its focus and having non-axial direction into

light rays in the axial direction. We will show the surfaces having the uniform

refraction property are semi-ellipsoids of revolution for n2 < n1 , and a sheet of

hyperboloids of revolution of two sheets for n2 > n1.

2.1. Snell’s law of refraction. Suppose Γ is a surface in Rn that separates two

media I and II that are homogeneous and isotropic. Let v1 and v2 be the velocities

of propagation of light in the media I and II respectively. The index of refraction

of the medium I is by definition n1 = c/v1, where c is the velocity of propagation

of light in the vacuum, and similarly n2 = c/v2. If a ray of light∗ having direction

x ∈ Sn−1 and traveling through the medium I hits Γ at the point P, then this ray

is refracted in the direction m ∈ Sn−1 through the medium II according with the

Snell law: n1 sinθ1 = n2 sinθ2, where θ1 is the angle between x and ν (the angle

of incidence), θ2 the angle between m and ν (the angle of refraction), and ν is the

unit normal to Γ at P going towards the medium II. The vectors x, ν and m are

coplanar.

∗Since the refraction angle depends on the frequency of the radiation, we assume our light ray

is monochromatic.
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In vector form, the Snell law can be expressed by the fact that the vector n2m−n1x

is parallel to the normal vector ν. If we set κ = n2/n1, then

(2.1) x − κm = λν,

for some λ ∈ R. It can be seen that λ = cosθ1 − κ cosθ2, cosθ1 = x · ν > 0, and

cosθ2 = m · ν =
√

1 − κ−2[1 − (x · ν)2].

When κ < 1, or equivalently v1 < v2, waves propagate in medium II faster than

in medium I, or equivalently, medium I is denser than medium II. In this case the

refracted rays tend to bent away from the normal, that is the case for example,

when medium I is glass and medium II is air. For this reason, the maximum angle

of refraction θ2 is π/2 which is achieved when sinθ1 = n2/n1 = κ. So there cannot

be refraction when the incidence angle θ1 is beyond this critical value, that is, we

must have 0 ≤ θ1 ≤ θc = arcsinκ.† It is easy to verify that

(2.2) θ2 − θ1 = arcsin(κ−1 sinθ1) − θ1

is strictly increasing for θ1 ∈ [0, θc], and therefore 0 ≤ θ2 − θ1 ≤
π
2
− θc. We then

lead to the following physical constraint:

if κ = n2/n1 < 1 and a ray of direction x through medium I

is refracted into medium II in the direction m, then m · x ≥ κ.(2.3)

Conversely, given x,m ∈ Sn−1 with x · m ≥ κ and κ < 1, it follows from (2.2) that

there exists a hyperplane refracting any ray through medium I with direction x

into a ray of direction m in medium II.

In case κ > 1, waves propagate in medium I faster than in medium II, and the

refracted rays tend to bent towards the normal. By the Snell law, the maximum

angle of refraction denoted by θ∗c is achieved when θ1 = π/2, and θ∗c = arcsin(1/κ).

Obviously,

(2.4) θ1 − θ2 = arcsin(κ sinθ2) − θ2

†If θ1 > θc, then the phenomenon of total internal reflection occurs.
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is strictly increasing for θ2 ∈ [0, θ∗c], and 0 ≤ θ1 −θ2 ≤
π
2
−θ∗c. We therefore obtain

the following physical constraint for the case κ > 1:

if a ray with direction x traveling through medium I

is refracted into a ray in medium II with direction m, then m · x ≥ 1/κ.(2.5)

On the other hand, by (2.4), if x,m ∈ Sn−1 with x · m ≥ 1/κ and κ > 1, then there

exists a hyperplane refracting any ray of direction x through medium I into a ray

with direction m in medium II.

We summarize the above discussion on the physical constraints of refraction in

the following lemma.

Lemma 2.1. Let n1 and n2 be the indices of refraction of two media I and II, respectively,

and κ = n2/n1. Then a light ray in medium I with direction x ∈ Sn−1 is refracted by some

surface into a light ray with direction m ∈ Sn−1 in medium II if and only if m · x ≥ κ,

when κ < 1; and if and only if m · x ≥ 1/κ, when κ > 1.

2.2. Surfaces with the uniform refracting property. Let m ∈ Sn−1 be fixed, and

we ask the following: if rays of light emanate from the origin inside medium I,

what is the surface Γ, interface of the media I and II, that refracts all these rays

into rays parallel to m?

Suppose Γ is parameterized by the polar representation ρ(x)x where ρ > 0

and x ∈ Sn−1. Consider a curve on Γ given by r(t) = ρ(x(t))x(t) for x(t) ∈ Sn−1.

According to (2.1), the tangent vector r′(t) to Γ satisfies r′(t)·(x(t)−κm) = 0. That is,(
[ρ(x(t))]′x(t) + ρ(x(t))x′(t)

)
·(x(t)−κm) = 0, which yields

(
ρ(x(t))(1 − κm · x(t))

)′
= 0.

Therefore

(2.6) ρ(x) =
b

1 − κm · x

for x ∈ Sn−1 and for some b ∈ Rn. To understand the surface given by (2.6), we

distinguish two cases κ < 1 and κ > 1.

Let us first consider the case κ < 1. For b > 0, we will see that the surface Γ given

by (2.6) is an ellipsoid of revolution about the axis of direction m. Suppose for
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simplicity that m = en, the nth-coordinate vector. If y = (y′, yn) ∈ Rn is a point on Γ,

then y = ρ(x)x with x = y/|y|. From (2.6), |y|−κ yn = b, that is, |y′|2 + y2
n = (κ yn +b)2

which yields |y′|2 + (1 − κ2)y2
n − 2κbyn = b2. This surface Γ can be written in the

form

(2.7)
|y′|2(
b

√
1 − κ2

)2 +

(
yn −

κb
1 − κ2

)2

(
b

1 − κ2

)2 = 1

which is an ellipsoid of revolution about the yn axis with foci (0, 0) and (0, 2κb/(1−

κ2)). Since |y| = κyn + b and the physical constraint for refraction (2.3),
y
|y|
· en ≥ κ

is equivalent to yn ≥
κb

1 − κ2 . That is, for refraction to occur y must be in the upper

part of the ellipsoid (2.7); we denote this semi-ellipsoid by E(en, b). To verify that

E(en, b) has the uniform refracting property, that is, it refracts any ray emanating

from the origin in the direction en, we check that (2.1) holds at each point. Indeed,

if y ∈ E(en, b), then
(

y
|y|
− κen

)
y
|y|
≥ 1−κ > 0, and

(
y
|y|
− κen

)
·en ≥ 0, and so

y
|y|
−κen

is an outward normal to E(en, b) at y.

Rotating the coordinates, it is easy to see that the surface given by (2.6) with

κ < 1 and b > 0 is an ellipsoid of revolution about the axis of direction m with foci

0 and
2κb

1 − κ2 m. Moreover, the semi-ellipsoid E(m, b) given by

(2.8) E(m, b) = {ρ(x)x : ρ(x) =
b

1 − κm · x
, x ∈ Sn−1, x ·m ≥ κ},

has the uniform refracting property, any ray emanating from the origin O is

refracted in the direction m.

Now turn to the case κ > 1. Due to the physical constraint of refraction (2.5),

we must have b < 0 in (2.6). Define for b > 0

(2.9) H(m, b) = {ρ(x)x : ρ(x) =
b

κm · x − 1
, x ∈ Sn−1, x ·m ≥ 1/κ}.

We claim that H(m, b) is the sheet with opening in direction m of a hyperboloid

of revolution of two sheets about the axis of direction m. To prove the claim, set
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for simplicity m = en. If y = (y′, yn) ∈ H(en, b), then y = ρ(x)x with x = y/|y|.

From (2.9), κ yn − |y| = b, and therefore |y′|2 + y2
n = (κ yn − b)2 which yields

|y′|2 − (κ2
− 1)

(yn −
κb

κ2 − 1

)2

−

(
κb

κ2 − 1

)2 = b2. Thus, any point y on H(en, b)

satisfies the equation

(2.10)

(
yn −

κb
κ2 − 1

)2

(
b

κ2 − 1

)2 −
|y′|2(
b

√
κ2 − 1

)2 = 1

which represents a hyperboloid of revolution of two sheets about the yn axis with

foci (0, 0) and (0, 2κb/(κ2
− 1)). Moreover, the upper sheet of this hyperboloid of

revolution is given by

yn =
κb

κ2 − 1
+

b
κ2 − 1

√√√
1 +

|y′|2(
b/
√
κ2 − 1

)2

and satisfies κyn−b > 0, and hence has polar equation ρ(x) =
b

κ en · x − 1
. Similarly,

the lower sheet satisfies κyn − b < 0 and has polar equation ρ(x) =
b

κ en · x + 1
.

For a general m, by a rotation, we obtain that H(m, b) is the sheet with opening in

direction m of a hyperboloid of revolution of two sheets about the axis of direction

m with foci (0, 0) and
2κb
κ2 − 1

m.

Notice that the focus (0, 0) is outside the region enclosed by H(m, b) and the

focus
2κb
κ2 − 1

m is inside that region. The vector κm −
y
|y|

is an inward normal to

H(m, b) at y, because by (2.9)(
κm −

y
|y|

)
·

(
2κb
κ2 − 1

m − y
)
≥

2κ2b
κ2 − 1

−
2κb
κ2 − 1

− κm · y + |y|

=
2κb
κ + 1

− b =
b(κ − 1)
κ + 1

> 0.

Clearly,
(
κm −

y
|y|

)
·m ≥ κ − 1 and

(
κm −

y
|y|

)
·

y
|y|
> 0. Therefore, H(m, b) satisfies

the uniform refraction property.
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We remark that one has to use H(−en, b) to uniformly refract in the direction

−en, and due to the physical constraint (2.5), the lower sheet of the hyperboloid of

equation (2.10) cannot refract in the direction −en.

From the above discussion, we have proved the following.

Lemma 2.2. Let n1 and n2 be the indexes of refraction of two media I and II, respectively,

and κ = n2/n1. Assume that the origin O is inside medium I, and E(m, b),H(m, b) are

defined by (2.8) and (2.9), respectively. We have:

(i) If κ < 1 and E(m, b) is the interface of media I and II, then E(m, b) refracts all rays

emitted from O into rays in medium II with direction m.

(ii) If κ > 1 and H(m, b) separates media I and II, then H(m, b) refracts all rays emitted

from O into rays in medium II with direction m.

Remark 2.3. After finding the surfaces with the uniform refraction property, we

learned that in the plane these are discussed in Descartes’ Eight Discourse on

Optics [Des01, pp. 127-149] and applied to the design of lenses. If κ < 1 and

the ellipse
(x − h)2

a2 +
(y − k)2

b2 = 1, with a > b, is filled with a material having

refraction index n1 and the outside of the ellipse is filled with a material having

refraction index n2, then all rays emanating from one focus are refracted by the

half of the ellipse closed to the other focus into rays parallel to the x-axis if the

eccentricity e =
√

1 − (b/a)2 = κ. Similarly, if κ > 1 and the region containing (h, k)

and bounded by the hyperbola
(x − h)2

a2 −
(y − k)2

b2 = 1, with a > b, is filled with

a material having refraction index n1, and the complement of this region is filled

with a material having refraction index n2, then all rays emanating from one focus

are refracted by the branch of the hyperbola closed to the other focus into rays

parallel to the x-axis if the eccentricity e =
√

1 + (b/a)2 = κ.

3. E       κ < 1

This section addresses the refractor problem in case κ < 1. We first introduce the

notions of refractor mapping and measure, and weak solution. We then convert
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the refractor problem into an optimal mass transport problem from Ω to Ω∗ with

the cost function log
1

1 − κx ·m
and establish existence and uniqueness of weak

solutions.

Let Ω, Ω∗ be two domains on Sn−1, the illumination intensity of the emitting

beam is given by nonnegative f (x) ∈ L1(Ω), and the prescribed illumination

intensity of the refracted beam is given by a nonnegative Radon measure µ on Ω∗.

Throughout this section, we assume that |∂Ω| = 0 and the physical constraint

(3.1) inf
x∈Ω,m∈Ω∗

x ·m ≥ κ.

We further suppose that the total energy conservation

(3.2)
∫

Ω

f (x) dx = µ(Ω∗) > 0,

and for any open set G ⊂ Ω

(3.3)
∫

G
f (x) dx > 0,

where dx denotes the surface measure on Sn−1.

3.1. Refractor measure and weak solutions. We begin with the notions of refrac-

tor and supporting semi-ellipsoid.

Definition 3.1. A surface R parameterized by ρ(x)x with ρ ∈ C(Ω) is a refractor from

Ω to Ω∗ for the case κ < 1 (often simply called as refractor in this section) if for any

x0 ∈ Ω there exists a semi-ellipsoid E(m, b) with m ∈ Ω∗ such that ρ(x0) =
b

1 − κm · x0

and ρ(x) ≤
b

1 − κm · x
for all x ∈ Ω. Such E(m, b) is called a supporting semi-ellipsoid

of R at the point ρ(x0)x0.

From the definition, any refractor is globally Lipschitz on Ω.

Definition 3.2. Given a refractor R = {ρ(x)x : x ∈ Ω}, the refractor mapping of R is the

multi-valued map defined by for x0 ∈ Ω

NR(x0) = {m ∈ Ω∗ : E(m, b) supports R at ρ(x0)x0 for some b > 0}.
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Given m0 ∈ Ω∗, the tracing mapping of R is defined by

TR(m0) = N−1
R

(m0) = {x ∈ Ω : m0 ∈ NR(x)}.

Definition 3.3. Given a refractor R = {ρ(x)x : x ∈ Ω}, the Legendre transform of R is

defined by

R
∗ = {ρ∗(m)m : ρ∗(m) = inf

x∈Ω

1
ρ(x)(1 − κ x ·m)

, m ∈ Ω∗}.

We now give some basic properties of Legendre transforms.

Lemma 3.4. Let R be a refractor from Ω to Ω∗. Then

(i) R∗ is a refractor from Ω∗ to Ω.

(ii) R∗∗ = (R∗)∗ = R.

(iii) If x0 ∈ Ω and m0 ∈ Ω∗, then x0 ∈ NR∗(m0) iff m0 ∈ NR(x0).

Proof. Given m0 ∈ Ω∗, ρ(x)(1 − κx · m0) must attain the maximum over Ω at some

x0 ∈ Ω. Then ρ∗(m0) = 1/[ρ(x0)(1 − κx0 ·m0)]. We always have

(3.4) ρ∗(m) = inf
x∈Ω

1
ρ(x)(1 − κm · x)

≤
1

ρ(x0)(1 − κx0 ·m)
, ∀m ∈ Ω∗.

Hence E(x0, 1/ρ(x0)) is a supporting semi-ellipsoid to R∗ at ρ∗(m0)m0. Thus, (i) is

proved.

To prove (ii), from the definitions of Legendre transform and refractor mapping

we have

(3.5) ρ(x0)ρ∗(m0) =
1

1 − κm0 · x0
for m0 ∈ NR(x0).

For x0 ∈ Ω, there exists m0 ∈ NR(x0) and so from (3.5) ρ∗(m0) =
1/ρ(x0)

1 − κx0 ·m0
. By

(3.4), ρ∗(m)(1 − kx0 ·m) attains the maximum 1/ρ(x0) at m0. Thus,

ρ∗∗(x0) = inf
m∈Ω∗

1
ρ∗(m)(1 − kx0 ·m)

=
1

ρ(x0)−1 .

To prove (iii), we get from the proof of (ii) that if m0 ∈ NR(x0), then the semi-

ellipsoid E(x0, 1/ρ(x0)) supports R∗ at ρ∗(m0)m0 and so x0 ∈ NR∗(m0). On the other

hand, if x0 ∈ NR∗(m0), we get that m0 ∈ NR∗∗(x0), and sinceR∗∗ = R, m0 ∈ NR(x0). �
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The next two lemmas discuss the refractor measure.

Lemma 3.5. C = {F ⊂ Ω∗ : TR(F) is Lebesgue measurable} is a σ-algebra containing all

Borel sets in Ω∗.

Proof. Obviously, TR(∅) = ∅ and TR(Ω∗) = Ω. Since TR(∪∞i=1Fi) = ∪∞i=1TR(Fi), C is

closed under countable unions. Clearly for F ⊂ Ω∗

TR(Fc) = {x ∈ Ω : NR(x) ∩ Fc , ∅}

= {x ∈ Ω : NR(x) ∩ F = ∅} ∪ {x ∈ Ω : NR(x) ∩ Fc , ∅, NR(x) ∩ F , ∅}

= [TR(F)]c
∪ [TR(Fc) ∩ TR(F)].(3.6)

If x ∈ TR(Fc) ∩ TR(F) ∩Ω, then R parameterized by ρ has two distinct supporting

semi-ellipsoids E(m1, b1) and E(m2, b2) at ρ(x)x. By (2.1), ρ(x)x is a singular point

of R. Otherwise, if R has the tangent hyperplane Π at ρ(x)x, then Π must coincide

both with the tangent hyperplane of E(m1, b1) and that of E(m2, b2) at ρ(x)x. It

follows from (2.1) that m1 = m2. Therefore, the area measure of TR(Fc) ∩ TR(F) is

0. So C is closed under complements, and we have proved that C is a σ-algebra.

To prove that C contains all Borel subsets, it suffices to show that TR(K) is

compact if K ⊂ Ω∗ is compact. Let xi ∈ TR(K) for i ≥ 1. There exists mi ∈ NR(xi)∩K.

Let E(mi, bi) be the supporting semi-ellipsoid to R at ρ(xi)xi. We have

(3.7) ρ(x)(1 − κmi · x) ≤ bi for x ∈ Ω,

where the equality in (3.7) occurs at x = xi. Assume that a1 ≤ ρ(x) ≤ a2 on Ω for

some constants a2 ≥ a1 > 0. By (3.7) and (3.1), a1(1 − κ) ≤ bi ≤ a2(1 − κ2). Assume

through subsequence that xi −→ x0, mi −→ m0 ∈ K, bi −→ b0, as i −→ ∞. By taking

limit in (3.7), one obtains that the semi-ellipsoid E(m0, b0) supports R at ρ(x0)x0

and x0 ∈ TR(m0). This proves TR(K) is compact. �

Lemma 3.6. Given a nonnegative f ∈ L1(Ω), the set function

MR, f (F) =

∫
TR(F)

f dx
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is a finite Borel measure defined on C and is called the refractor measure associated with

R and f .

Proof. Let {Fi}
∞

i=1 be a sequence of pairwise disjoint sets in C. Let H1 = TR(F1),

and Hk = TR(Fk) \ ∪k−1
i=1TR(Fi), for k ≥ 2. Since Hi ∩ H j = ∅ for i , j and ∪∞k=1Hk =

∪
∞

k=1TR(Fk), it is easy to get

MR, f (∪∞k=1Fk) =

∫
∪∞k=1Hk

f dx =

∞∑
k=1

∫
Hk

f dx.

Observe that TR(Fk) \ Hk = TR(Fk) ∩ (∪k−1
i=1TR(Fi)) is a subset of the singular set

of R and has area measure 0 for k ≥ 2. Therefore,
∫

Hk
f dx = MR, f (Fk) and the

σ-additivity ofMR, f follows. �

The notion of weak solutions is introduced through the conservation of energy.

Definition 3.7. A refractorR is a weak solution of the refractor problem for the case κ < 1

with emitting illumination intensity f (x) on Ω and prescribed refracted illumination

intensity µ on Ω∗ if for any Borel set F ⊂ Ω∗

(3.8) MR, f (F) =

∫
TR(F)

f dx = µ(F).

3.2. Variational frame of optimal mass transport. The existence and uniqueness

of the refractor will be established by converting the question into a optimal mass

transport problem, see [Vil03] for a comprehensive description of this field. To do

so, we now turn to discuss some results for general optimal mass transport. Let

D, D∗ be two domains on Sn−1 with |∂D| = 0. Let N be a multi-valued mapping

from D onto D∗ such that N(x) is single-valued a.e. on D. For F ⊂ D∗, set

T (F) = N−1(F) = {x ∈ D : N(x) ∩ F , ∅}. N is measurable if T (F) is Lebesgue

measurable for any Borel set F ⊂ D∗. Given nonnegative g ∈ L1(D) and finite

Radon measure Γ on D∗ satisfying
∫

D
g(x) dx = Γ(D∗) > 0,N is measure preserving

from g(x)dx to Γ if for any Borel F ⊂ D∗

(3.9)
∫
T (F)

g(x) dx = Γ(F).
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Lemma 3.8. N is a measure preserving mapping from g(x)dx to Γ if and only if for any

v ∈ C(D∗)

(3.10)
∫

D
v(N(x))g(x) dx =

∫
D∗

v(m) dΓ(m).

We remark that v(N(x)) is well defined for x ∈ D\S whereN(x) is single-valued

on D \ S and |S| = 0, and
∫

D
v(N(x))g(x) dx is understood as

∫
D\S

v(N(x))g(x) dx.

Proof. LetN be a measure preserving mapping. To show (3.10), it suffices to prove

it for v = χF, the characteristic function of a Borel set F. It is easy to verify that

χT (F)(x) = χF(N(x)) for x ∈ D \ S. Therefore by (3.9)∫
D∗
χF(m) dΓ =

∫
T (F)∩(D\S)

g dx =

∫
D\S

χF(N(x))g(x) dx.

To prove the converse, assume that (3.10) holds. We now show for any relatively

open set G in D∗

(3.11)
∫
T (G)

g dx ≤ Γ(G).

Indeed, given a compact set K ⊂ G, choose v ∈ C(D∗) such that 0 ≤ v ≤ 1, v = 1 on

K, and v = 0 outside G. By (3.10), one gets∫
T (K)

g(x) dx ≤
∫

D
v(N(x))g(x) dx ≤ Γ(G),

and (3.11) follows from arbitrariness of K. Because a Borel set can be approximated

by open sets, (3.11) is still valid for Borel sets F in D∗. Noticing (T (F))c
⊂ T (Fc), to

get the reverse inequality we apply (3.11) to D∗ \ F and (3.9) follows. �

Consider the general cost function c(x,m) ∈ Lip(D × D∗), the space of Lipschitz

functions on D ×D∗, and the set of admissible functions

K = {(u, v) : u ∈ C(D), v ∈ C(D∗),u(x) + v(m) ≤ c(x,m), ∀x ∈ D,∀m ∈ D∗}.

Define the dual functional I for (u, v) ∈ C(D) × C(D∗)

I(u, v) =

∫
D

u(x)g(x) dx +

∫
D∗

v(m) dΓ,
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and define the c- and c∗- transforms

uc(m) = inf
x∈D

[c(x,m) − u(x)] , m ∈ D∗; vc(x) = inf
m∈D∗

[c(x,m) − v(m)] , x ∈ D.

Definition 3.9. A function φ ∈ C(D) is c-concave if for x0 ∈ D, there exist m0 ∈ D∗ and

b ∈ R such that φ(x) ≤ c(x,m0) − b on D with equality held at x = x0.

Obviously vc is c-concave for any v ∈ C(D∗). We collect the following properties:

(1) For any u ∈ C(D) and v ∈ C(D∗), vc ∈ Lip(D) and uc
∈ Lip(D∗) with Lipschitz

constants bounded uniformly by the Lipschitz constant of c.

(2) If (u, v) ∈ K , then v(m) ≤ uc(m) and u(x) ≤ vc(x). Also (vc, v), (u,uc) ∈ K .

(3) φ is c-concave iff φ = (φc)c.

Indeed, if φ(x) ≤ c(x,m0) − b on D and the equality holds at x = x0, then

b = φc(m0). So φ(x0) = c(x0,m0) − φc(m0) which yields φ(x0) ≥ (φc)c(x0). On

the other hand, from the definitions of c and c∗ transforms we always have

that (φc)c ≥ φ for any φ.

Definition 3.10. Given a function φ(x), the c-normal mapping of φ is defined by

Nc,φ(x) = {m ∈ D∗ : φ(x) + φc(m) = c(x,m)}, for x ∈ D,

and Tc,φ(m) = N−1
c,φ(m) = {x ∈ D : m ∈ Nc,φ(x)}.

We assume that the cost function c(x,m) satisfies the following:

For any c-concave function φ,Nc,φ(x) is single-valued a.e. on D(3.12)

andNc,φ is Lebesgue measurable.

Lemma 3.11. Suppose that c(x,m) satisfies the assumption (3.12). Then

(i) If φ is c-concave andNc,φ is measure preserving from g(x)dx to Γ, then (φ,φc) is

a maximizer of I(u, v) inK .

(ii) If φ(x) is c-concave and (φ,φc) maximizes I(u, v) in K , then Nc,φ is measure

preserving from g(x)dx to Γ.
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Proof. First prove (i). Given (u, v) ∈ K , obviously

u(x) + v(Nc,φ(x)) ≤ c(x,Nc,φ(x)) = φ(x) + φc(Nc,φ(x)), a.e. x on D.

Integrating the above inequality with respect to gdx yields∫
D

ug dx +

∫
D

v(Nc,φ(x))g(x) dx ≤
∫

D
φg dx +

∫
D
φc(Nc,φ(x))g(x) dx.

By Lemma 3.8, it yields I(u, v) ≤ I(φ,φc) and from (2) above the conclusion follows.

To prove (ii), let ψ = φc, and for v ∈ C(D∗), let ψθ(m) = ψ(m) + θ v(m) where

0 < |θ| ≤ ε0 with ε0 small, and let φθ = (ψθ)c. It suffices to show

(3.13) 0 = lim
θ→0

I(φθ, ψθ) − I(φ,ψ)
θ

=

∫
D
−v(Nc,φ(x)) g dx +

∫
D∗

v(m) dΓ.

Since (φθ, ψθ) ∈ K , I(φθ, ψθ) ≤ I(φ,ψ). So the limit must be zero if it exists. We

have
I(φθ, ψθ) − I(φ,ψ)

θ
=

∫
D

φθ − φ

θ
g dx +

∫
D∗

v(m) dΓ.

To prove (3.13), one only needs to show that
φθ(x) − φ(x)

θ
is uniformly bounded

and
φθ(x) − φ(x)

θ
→ −v(Nc,φ(x)) for all x ∈ D \ S whereNc,φ(x) is single-valued on

D \ S and |S| = 0. Indeed, for x ∈ D \ S, we have φθ(x) = c(x,mθ) − ψθ(mθ) and

φ(x) = c(x,m1) − ψ(m1) for some mθ,m1 ∈ D∗. Then we get

−θ v(mθ) ≤ φθ(x) − φ(x) ≤ −θ v(m1).

Moreover, m1 = Nc,φ(x) due to ψ = φc. To finish the proof, we show that mθ

converges to m1 as θ → 0. Otherwise, there exists a sequence mθk such that

mθk → m∞ , m1. So φ(x) = c(x,m∞) − ψ(m∞), which yields m∞ ∈ Nc,φ(x). We then

get m1 = m∞, a contradiction. The proof is complete. �

Lemma 3.12. There exists a c-concave φ such that

I(φ,φc) = sup{I(u, v) : (u, v) ∈ K}.
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Proof. Let

I0 = sup{I(u, v) : (u, v) ∈ K},

and let (uk, vk) ∈ K be a sequence such that I(uk, vk) → I0. Set ūk = (vk)c and

v̄k = (ūk)c. From property (2) above, (ūk, v̄k) ∈ K and I(ūk, v̄k)→ I0. Let ck = minD ūk

and define

u]k = ūk − ck, v]k = v̄k + ck.

Obviously (u]k, v
]
k) ∈ K and by the mass conservation of gdx and Γ, I(ūk, v̄k) =

I(u]k, v
]
k). Since ūk are uniformly Lipschitz, u]k are uniformly bounded. In addition,

v]k = (ūk)c + ck = (u]k)
c and consequently v]k are also uniformly bounded. By Arzelá-

Ascoli’s theorem, (u]k, v
]
k) contains a subsequence converging uniformly to (φ,ψ)

on D×D∗. We then obtain that (φ,ψ) ∈ K and I0 = sup{I(u, v) : (u, v) ∈ K} = I(φ,ψ).

From property (2) above, (ψc, (ψc)c) is the sought maximizer of I(u, v). �

Lemma 3.13. Suppose that c(x,m) satisfies the assumption (3.12). Let (φ,φc) with

φ c-concave be a maximizer of I(u, v) in K . Then inf
s∈S

∫
D

c(x, s(x))g(x) dx is attained at

s = Nc,φ, whereS is the class of measure preserving mappings from g(x)dx to Γ. Moreover

(3.14) inf
s∈S

∫
D

c(x, s(x))g(x) dx = sup{I(u, v) : (u, v) ∈ K}.

Proof. Let ψ = φc. For s ∈ S, we have∫
D

c(x, s(x))g(x) dx ≥
∫

D

(
φ(x) + ψ(s(x))

)
g(x) dx

=

∫
D
φ(x)g(x) dx +

∫
D
ψ(s(x))g(x) dx

=

∫
D
φ(x)g(x) dx +

∫
D∗
ψ(m) dΓ = I(φ,ψ)

=

∫
D

(
φ(x) + ψ(Nc,φ(x))

)
g(x) dx, from Lemma 3.11(ii)

=

∫
D

c(x,Nc,φ(x))g(x) dx.

�
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Obviously, for any c-concave function φ, Nc,φ has the following converging

property (C): if mk ∈ Nc,φ(xk), xk −→ x0 and mk −→ m0, then m0 ∈ Nc,φ(x0).

Lemma 3.14. Assume that c(x,m) satisfies the assumption (3.12) and that
∫

G
g dx > 0 for

any open G ⊂ D. Then the minimizing mapping of inf
s∈S

∫
D

c(x, s(x))g(x) dx is unique in

the class of measure preserving mappings from g(x)dx to Γ with the converging property

(C).

Proof. From Lemmas 3.12 and 3.13, let Nc,φ be a minimizing mapping associated

with a maximizer (φ,φc) of I(u, v) with φ c-concave. Suppose that N0 is another

minimizing mapping with the converging property (C). Clearly∫
D

(
c(x,N0(x)) − φ(x) − φc(N0(x))

)
g(x) dx

= inf
s∈S

∫
D

c(x, s(x))g(x) dx −
(∫

D
φ(x)g(x) dx +

∫
D∗
φc(m) dΓ

)
= 0,

and sinceφ(x)+φc(N0(x)) ≤ c(x,N0(x)), it follows thatφ(x)+φc(N0(x)) = c(x,N0(x))

on the set {x ∈ D : g(x) > 0} which is dense in D. Hence from (3.12) and the

converging property (C), we getN0(x) = Nc,φ(x) a.e. on D. �

We remark from the above proof that if g(x) > 0 on D, then the minimizing

mapping of infs∈S

∫
D

c(x, s(x))g(x) dx is unique in the class of measure preserving

mappings from g(x)dx to Γ.

3.3. Existence and uniqueness for the refractor problem if κ < 1. We are ready

to use the concepts and results discussed above to establish the following main

existence and uniqueness theorem.

Theorem 3.15. Assume that Ω, Ω∗, f , µ satisfy (3.1)-(3.3) and |∂Ω| = 0. Then there

exists a weak solution R unique up to dilations of the refractor problem for the case κ < 1

with emitting illumination intensity f (x) and prescribed refracted illumination intensity

µ.
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Proof. We first transform our problem into an optimal mass transport problem

for the cost function c(x,m) = log
1

1 − κx ·m
. Obviously, R = {ρ(x)x : x ∈ Ω} is a

refractor iff logρ is c-concave. Furthermore, logρ∗ = (logρ)c, logρ = (logρ∗)c by

Remark (3) after Definition 3.9, andNR(x0) = Nc,logρ(x0) by (3.5). By the Snell law

and Lemma 3.5, c(x,m) satisfies (3.12). From the definitions, R is a weak solution

of the refractor problem iff logρ is c-concave and Nc,logρ is a measure preserving

mapping from f (x)dx to µ.

By Lemma 3.12, there exists a c-concave φ(x) such that (φ,φc) maximizes

I(u, v) =

∫
Ω

u f dx +

∫
Ω∗

v dµ(m)

in K = {(u, v) ∈ C(Ω) × C(Ω∗) : u(x) + v(m) ≤ c(x,m), for x ∈ Ω,m ∈ Ω∗}. Then by

Lemma 3.11, Nc,φ(x) is a measure preserving mapping from f dx to µ. Therefore,

R = {eφ(x)x : x ∈ Ω} is a weak solution of the refractor problem.

It remains to prove the uniqueness of solutions up to dilations. LetRi = {ρi(x)x :

x ∈ Ω}, i = 1, 2, be two weak solutions of the refractor problem. Obviously,Nc,logρi

have the converging property (C). It follows from Lemmas 3.11, 3.13 and 3.14 that

Nc,logρ1(x) = Nc,logρ2(x) a.e. on Ω. That is, NR1(x) = NR2(x) a.e. on Ω. By (2.1),

νi(x) =
x − κNRi(x)
|x − κNRi(x)|

is the unit normal to Ri towards medium II at ρi(x)x where Ri

is differentiable. So ν1(x) = ν2(x) a.e. and consequently ρ1(x) = Cρ2(x) for some

C > 0. �

4. E        κ > 1

The refractor problem in case κ > 1 can be solved by converting it to an optimal

mass transport problem in a way similar to the case κ < 1. The main difference

is to use semi-hyperboloids of two sheets H(m, b), defined by (2.9), in place of the

semi-ellipsoids E(m, b), and the associated cost function for the case κ > 1 is given

by log(κx ·m − 1).

Let Ω, Ω∗ be two domains on Sn−1, the illumination intensity of the emitting

beam is given by nonnegative f (x) ∈ L1(Ω), and the prescribed illumination
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intensity of the refracted beam is given by a nonnegative Radon measure µ on Ω∗.

Throughout this section, we assume that |∂Ω| = 0 and the physical constraint

(4.1) inf
x∈Ω,m∈Ω∗

x ·m ≥ 1/κ + δ,

for some δ > 0. We also suppose that the total energy conservation

(4.2)
∫

Ω

f (x) dx = µ(Ω∗) > 0,

and for any open set G ⊂ Ω

(4.3)
∫

G
f (x) dx > 0.

We begin with the notions of refractor and supporting semi-hyperboloid.

Definition 4.1. A surface R parameterized by ρ(x)x with ρ ∈ C(Ω) is a refractor from Ω

to Ω∗ for the case κ > 1 (often simply called as refractor in this section) if for any x0 ∈ Ω

there exists a semi-hyperboloid H(m, b) with m ∈ Ω∗ such that ρ(x0) =
b

κm · x0 − 1
and

ρ(x) ≥
b

κm · x − 1
for all x ∈ Ω. Such H(m, b) is called a supporting semi-hyperboloid of

R at the point ρ(x0)x0.

Obviously, any refractor must be Lipschitz in Ω. The refractor mapping and

Legendre transform are defined similarly.

Definition 4.2. Given a refractor R = {ρ(x)x : x ∈ Ω}, the refractor mapping of R is the

multi-valued map defined by for x0 ∈ Ω

NR(x0) = {m ∈ Ω∗ : H(m, b) supports R at ρ(x0)x0 for some b > 0}.

Given m0 ∈ Ω∗, the tracing mapping of R is defined by

TR(m0) = N−1
R

(m0) = {x ∈ Ω : m0 ∈ NR(x)}.

Definition 4.3. Given a refractor R = {ρ(x)x : x ∈ Ω}, the Legendre transform of R is

defined by

R
∗ = {ρ∗(m)m : ρ∗(m) = sup

x∈Ω

1
ρ(x)(κ x ·m − 1)

, m ∈ Ω∗}.
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The proof of the following lemma is analogous to that of Lemma 3.4.

Lemma 4.4. Let R be a refractor from Ω to Ω∗. Then

(i) R∗ is a refractor from Ω∗ to Ω.

(ii) R∗∗ = (R∗)∗ = R.

(iii) If x0 ∈ Ω and m0 ∈ Ω∗, then x0 ∈ NR∗(m0) iff m0 ∈ NR(x0).

We can also prove the following lemma about the refractor measure.

Lemma 4.5. Let R be a refractor. Then C = {F ⊂ Ω∗ : TR(F) is Lebesgue measurable} is

a σ-algebra containing all Borel sets in Ω∗, and the set function on C defined by

MR, f (F) =

∫
TR(F)

f dx

is a finite Radon measure, called as the refractor measure associated with R and f .

Weak solutions are again introduced through energy conservation.

Definition 4.6. A refractorR is a weak solution of the refractor problem for the case κ > 1

with emitting illumination intensity f (x) on Ω and prescribed refracted illumination

intensity µ on Ω∗ if for any Borel set F ⊂ Ω∗

(4.4) MR, f (F) =

∫
TR(F)

f dx = µ(F).

Below is the main existence and uniqueness theorem for the case κ > 1.

Theorem 4.7. Assume that Ω, Ω∗, f , µ satisfy (4.1)-(4.3) and |∂Ω| = 0. Then there

exists a weak solution R unique up to dilations of the refractor problem for the case κ > 1

with emitting illumination intensity f (x) and prescribed refracted illumination intensity

µ.

Proof. We first convert the problem into an optimal mass transport problem with

the cost function c(x,m) = log(κx · m − 1). Obviously, R = {ρ(x)x : x ∈ Ω} is

a refractor iff − logρ is c-concave. Furthermore, − logρ∗ = (− logρ)c, − logρ =

(− logρ∗)c by Lemma 4.4, and NR(x0) = Nc,− logρ(x0). By the Snell law, c(x,m)
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satisfies (3.12). From the definitions, R is a weak solution of the refractor problem

iff − logρ is c-concave andNc,− logρ is a measure preserving mapping from f dx to

µ.

By Lemma 3.12, there exists a c-concave function φ such that (φ,φc) maximizes

I(u, v) =

∫
Ω

u f dx +

∫
Ω∗

v dµ(m)

in K = {(u, v) ∈ C(Ω) × C(Ω∗) : u(x) + v(m) ≤ c(x,m), for x ∈ Ω,m ∈ Ω∗}. Then by

Lemma 3.11, Nc,φ(x) is a measure preserving mapping from f dx to µ. Therefore,

R = {e−φ(x)x : x ∈ Ω} is a weak solution of the refractor problem.

It remains to prove the uniqueness of solutions up to dilations. LetRi = {ρi(x)x :

x ∈ Ω}, i = 1, 2, be two weak solutions of the refractor problem. Obviously,Nc,− logρi

has the converging property (C). It follows from Lemmas 3.11, 3.13 and 3.14 that

Nc,− logρ1(x) = Nc,− logρ2(x) a.e. on Ω. That is, NR1(x) = NR2(x) a.e. on Ω. By (2.1),

νi(x) =
κNRi(x) − x
|κNRi(x) − x|

is the unit normal to Ri towards medium II at ρi(x)x where

Ri is differentiable. So ν1(x) = ν2(x) a.e. and consequently ρ1(x) = Cρ2(x) for some

C > 0. �

Remark 4.8. Theorems 3.15 and 4.7 imply the existence of a lens refracting radia-

tion in a prescribed way. The lens is bounded by two surfaces, the “outer” surface

is the one described in those theorems and the “inner” one is a sphere with center

at the point from where the radiation emanates. These ideal lenses do not have

spherical aberration, i.e., they focus all incoming rays into exactly one point.

5. T     A3

If f is a function defined in an n-dimensional neighborhood of the point x ∈ Sn−1,

the tangential gradient f at x is defined by

∇x f (x) = Dx f (x) − (Dx f (x) · x) x,



22 C. E. GUTIÉRREZ AND QINGBO HUANG

where Dx is the standard gradient inRn. Also the tangential Hessian of f at x with

respect to the standard metric in the sphere, dx2
1 + · · · + dx2

n, is defined by

∇
2
xx f (x) = D2

xx f (x) − (Dx f (x) · x)Id,

where D2
xx is the standard Hessian in Rn.

Since the refractor problem is a mass transportation problem, the differential

equation satisfied by the potential φ = logρ is

(5.1) det
(
∇

2
xxφ(x) +A(x, p)

)
= B(x, p), p = ∇xφ(x),

withA(x, p) =
(
∇

2
xkxl

c(x,Y(x, p))
)
, B(x, p) =

∣∣∣∣det
(
∇xk∇ylc(x,Y(x, p))

)∣∣∣∣ f (x)
f ∗(Y(x, p))

, and

∇xc(x,Y) = p; see [MTW05], [TW07], [Tru06], and [Vil07, Chapter 12]. We are

going to calculate the matrixA and B.

Let 0 < κ < 1, and the cost function c(x, y) = − 1
κ log(1 − κ x · y), x · y ≥ κ (the

factor 1/κ is added to simplify the computations). We have

∇xc(x, y) =
y − (x · y) x
1 − κ x · y

.

For each x ∈ Sn−1 and for each p ∈ Rn in the tangent plane to the sphere at x,

i.e., x ⊥ p, we want to find Y = Y(x, p) ∈ Sn−1 such that ∇xc(x,Y) = p. Indeed,

we write Y = λx + µp + δx⊥ with x⊥ a vector orthogonal to both x and p. Then

∇xc(x,Y) =
µ p + δx⊥

1 − κλ
= p. We have δ = 0, 1 = λ2 + µ2

|p|2, and since x · Y ≥ κ, we

obtain

(5.2)

Y(x, p) = λ(p) x + (1− κλ(p)) p, λ(p) =
κ|p|2 +

√
h(p)

1 + κ2|p|2
, h(p) = 1− (1− κ2)|p|2,

for |p| ≤ 1/
√

1 − κ2 (there is no solution Y for larger values of p). Notice that

Dxc(x,Y) · x =
λ(p)

1 − κλ(p)
and

(5.3) cxi(x,Y) = pi +
λ(p)

1 − κλ(p)
xi.
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We next calculate ∇2
xxc(x, y) =

(
∇

2
xkxl

c(x, y)
)
. Notice that

cxkxl(x, y) = κcxk(x, y) cxl(x, y).

We haveA(x, p) =
(
akl(x, p)

)
=

(
∇

2
xkxl

c(x,Y(x, p))
)

and therefore

(5.4) akl(x, p) = κ

(
pk +

λ(p)
1 − κλ(p)

xk

) (
pl +

λ(p)
1 − κλ(p)

xl

)
−

λ(p)
1 − κλ(p)

δkl.

The A3s condition introduced by Ma, Trudinger and Wang [MTW05] reads

(5.5) Dpip jakl(x, p)ξiξ jηkηl ≤ −c0|ξ|
2
|η|2,

for all x ∈ Sn−1, and for all p, ξ, η ∈ Rn in the tangent plane to x, i.e., p, ξ, η ⊥ x,

with ξ ⊥ η, and c0 a positive constant. Similarly, the matrixA verifies A3w if (5.5)

holds with c0 = 0. Letting g(p) =
λ(p)

1 − κλ(p)
=

κ
1 − κ2 +

√
h(p)

1 − κ2 and differentiating

akl with respect to pi, p j yields

Dpip jakl(x, p) = κ
(
(∂pip j g xk)(pl + gxl) + (δki + ∂pi gxk)(δl j + ∂p j gxl)

+(δkj + ∂p j gxk)(δli + ∂pi gxl) + (pk + gxk)(∂pip j gxl)
)
− ∂pip j gδkl.

Hence

Dpip jakl(x, p)ξiξ jηkηl

= 2κ〈D2
ppg(p)ξ, ξ〉(x · η)

(
(p · η) + g(p)(x · η)

)
+ 2κ(x · η)2

〈Dpg(p) · ξ〉2 − 〈D2
ppg(p)ξ, ξ〉|η|2.

We have

〈D2
ppg(p)ξ, ξ〉 = −

|ξ|2h(p) + (1 − κ2)(p · ξ)2

h(p)3/2

Since x ⊥ ξ, η, and ξ ⊥ η, we obtain∑
i, j,k,l

Dpip jakl(x, p)ξiξ jηkηl =
|ξ|2h(p) + (1 − κ2)(p · ξ)2

h(p)3/2 |η|2,

and so A3w does not hold‡. From [Loe06, Theorem 3.2] one cannot expect C1

regularity of u in case κ < 1.

‡Notice that −c verifies A3w for |p| ≤ 1/
√

1 − κ2.
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Let us now consider the case κ > 1. In this case the cost function is c(x, y) =
1
κ

log(κ x · y − 1), for x · y ≥ 1/κ. We then have

∇xc(x, y) =
y − (x · y)x
κx · y − 1

.

Proceeding as in the previous case we get that

Y(x, p) = λ(p)x + (κλ(p) − 1)p,

where λ(p) is defined in (5.2), now for all p. Since in this case

cxix j(x, y) = −κcxi(x, y) cx j(x, y),

the formula forA(x, p) is now

akl(x, p) = −κ

(
pk +

λ(p)
κλ(p) − 1

xk

) (
pl +

λ(p)
κλ(p) − 1

xl

)
−

λ(p)
κλ(p) − 1

δkl,

that is,

akl(x, p) = −κ
(
pk − g(p)xk

) (
pl − g(p)xl

)
+ g(p)δkl.

Therefore we now get

Dpip jakl(x, p)ξiξ jηkηl

= −2κ〈D2
ppg(p)ξ, ξ〉(x · η)

(
(p · η) − g(p)(x · η)

)
− 2κ(x · η)2

〈Dpg(p) · ξ〉2 + 〈D2
ppg(p)ξ, ξ〉|η|2.

From the orthogonality and the value of D2
ppg,

∑
i, j,k,l

Dpip jakl(x, p)ξiξ jηkηl = −
|ξ|2h(p) + (1 − κ2)(p · ξ)2

h(p)3/2 |η|2 ≤ −
1

h(p)3/2 |ξ|
2
|η|2,

and therefore A3w holds and A3s does not.

To find B, if 0 < κ < 1, then we have

∇xi∇y jc(x, y) =
δi j

1 − κx · y
+κ

yix j

(1 − κx · y)2−
xix j

(1 − κx · y)2−
yiy j

1 − κx · y
−
κyiy j(x · y)
(1 − κx · y)2 +

xiy j(x · y)
(1 − κx · y)2 .
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Therefore

∇xi∇y jc(x,Y(x, p)) =
δi j

1 − κλ
+

x j(κYi − xi) − Y j(Yi − λxi)
(1 − κλ)2

=
δi j

1 − κλ
+

1
1 − κλ

x j
(
(κ − λ)pi − xi

)
− pip j.

Similarly, if κ > 1 one obtains that

∇xi∇y jc(x,Y(x, p)) =
δi j

κλ − 1
+

1
κλ − 1

x j
(
(λ − κ)pi − xi

)
+ pip j.
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