Problem Description
Discretized transport equations for a fluid flow include two types of unknowns:
- Velocity components \(u, v, w \)
- Pressure field \(p \)

As seen in the previous chapter, scalar quantities such as \(p \) (denoted \(\phi \) in the previous chapters) are typically stored at computational nodes (i.e., CV centers).

Question: can the velocity components be stored at the same locations?

Example: Pressure and velocities stored at the computational nodes in a uniform grid
In this example, let’s assume that the pressure field (grey values) is a highly irregular “checkerboard”.

![Diagram of a staggered grid showing pressure and velocity field storage](image)

Calculation of the pressure gradients across the active CV:

\[
\frac{\partial p}{\partial x} = \]

\[
\frac{\partial p}{\partial y} = \]

\[
\Rightarrow \]
Staggered Grid

To overcome this issue, a **staggered grid** can be used to store the velocity components:

Calculation of the pressure gradients across the u-CV:

\[
\frac{\partial p}{\partial x} = \quad \frac{\partial p}{\partial y} =
\]

Advantages:
STAGGERED GRID NOTATION

Unbroken grid lines:

Dashed lines: