TURBULENT FLOW IN CIRCULAR TUBES: EXAMPLE

Hot air with a mass flow rate \(\dot{m} = 0.050 \text{ kg/s} \) flows through an uninsulated sheet metal duct of diameter \(D = 0.15 \text{ m} \), which is in the crawlspace of a house. The hot air enters at \(T_{m,i} = 103 \, ^\circ\text{C} \) and, after a distance \(L = 5 \, \text{m} \), cools to \(T_{m,L} = 85 \, ^\circ\text{C} \). The heat transfer coefficient between the duct outer surface and the ambient air at \(T_\infty = 0 \, ^\circ\text{C} \) is known to be \(h_o = 6 \, \text{W/m}^2\cdot\text{K} \).

1. Calculate the heat loss from the duct over the length \(L \).
2. Determine the heat flux and the duct surface temperature at \(x = L \).

ASSUMPTIONS

FLUID PROPERTIES

Film temperature: \(\) \hspace{2cm} Outlet temperature: \(\)

Air properties: \(\)
Energy balance for the entire tube:

Heat flux calculation:
An expression for the heat flux can be derived from the thermal circuit representation:

\[\Rightarrow \]

The convection coefficient \(h_c \) can be obtained by considering an appropriate convection correlation.

Flow regime determination:
The local Nusselt number for fully developed turbulent flow in circular pipes is given by:

\[\text{Nu}_d = 0.023 \text{Re}^{4/5} \text{Pr}^n \]

For heating, \(n = 0.4 \) and for cooling, \(n = 0.3 \).

Convection coefficient calculation:

Heat flux:

Calculation of the surface temperature:

From the circuit representation: