Derivation process

1. \[\sum \mathbf{F} = m \mathbf{a} \]
 - Newton's 2nd Law.
 - Apply to a volume element
 - Shrink the volume to a point

2. \[f_1 (\mathbf{V}, \mathbf{\Xi}) \]
 - Cauchy's equation of motion.
 - (12 unknowns)

3. \[f_2 (\mathbf{\Xi}, \mathbf{\varepsilon}) \]
 - Fluid constitutive equation.

4. \[f_3 (\mathbf{V}, \mathbf{\varepsilon}) \]
 - (Still 12 unknowns)

5. \[f_4 (\mathbf{\varepsilon}, \mathbf{V}) \]
 - Deformation analysis

6. \[f_5 (\mathbf{V}, p) \]
 - Navier-Stokes equations
 - (4 unknowns: \(u, v, w, p \))

\[\rho \frac{D\mathbf{V}}{Dt} = - \nabla p + \mu \nabla^2 \mathbf{V} + \rho \mathbf{q} \]

NS equation for incompressible fluid

+ \[\nabla \cdot \mathbf{V} = 0 \]
continuity equation for incompressible fluid.

System of 4 equations (3 NS equations + 1 continuity equation), with 4 unknowns.