Material description: tracking / following a fluid particle.

Spatial description: description at fixed locations.

All laws of physics are readily available to describe fluid particle in motion. Tool to express them at fixed spatial locations is the material derivative. \(\left(\frac{D}{Dt} \right) \)

\[
\frac{Df}{Dt} = \frac{df}{dt} + (\nabla \cdot \mathbf{v}) f
\]

where \(\nabla = \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \)

In Cartesian coordinates:

\[
\frac{Df}{Dt} = \frac{df}{dt} + u \frac{df}{dx} + v \frac{df}{dy} + w \frac{df}{dz}
\]

Lines of fluid motion:

Pathline: trajectory of a fluid particle

Streamline: line everywhere tangent to velocity vector field.

\(\Rightarrow \) provides qualitative and quantitative info.

BUT: difficult to obtain experimentally.

Streakline: locus of all particles that have passed through a common point.

\(\Rightarrow \) does not provide much info.

BUT easy to obtain experimentally.

all the same for steady flows