CV ANALYSIS - CONSERVATION OF MASS: EXAMPLE PROBLEM
FLOW ON A MOVING BELT

A belt driven at speed U by a pair of rollers generates a linear velocity profile in a gas within a two-dimensional channel of height h.

The channel is fed with gas through an attached, two-dimensional channel of height H. Since the feed channel is very long, the flow can be considered fully developed and its velocity profile parabolic:

\[u_1(y_1) = u_{\text{max}} \left[1 - 4 \left(\frac{y_1}{H} \right)^2 \right], \]

Where u_{max} is the maximum speed attained at the center of the channel.

Determine the expression for u_{max} in terms of H, h and U.

1- Choice of the CV (and selection of appropriate coordinate systems)
2- General expression of the governing equation

3- Assumptions

A1:

A2:

4- Reduced governing equation

5- Study of the fluxes across the CS

Flux across the entrance

Flux across the exit

6- Solution to the governing equation