MEASURES OF FLUID MASS AND WEIGHT

Density
Density is defined as *mass per unit volume*:

$$\rho = \frac{m}{V}$$

units: \([\rho] = \text{kg/m}^3\)

For a differential volume element of mass \(\delta m\) and volume \(\delta V\), density can be expressed as \(\rho = \frac{\delta m}{\delta V}\).

For an ideal gas: \(P = \rho RT\), where \(P\) is the absolute pressure, \(R\) is the gas constant, and \(T\) is the thermodynamic temperature.

Specific Volume
The specific volume is the reciprocal of density and is defined as *volume per unit mass*:

$$\alpha = \frac{1}{\rho}$$

units: \([\alpha] = \text{m}^3/\text{kg}\)

Specific Weight
The weight of a unit volume of substance is called specific weight and is expressed as:

$$\gamma = \rho g$$

units: \([\gamma] = \text{N/m}^3\)

where \(g\) is the gravitational acceleration.

Specific Gravity
The specific gravity is defined as the ratio of the density of a substance to the density of some standard substance at a specified temperature (usually water at 4°C, for which \(\rho_{\text{H}_2\text{O}} = 1000\) kg/m³):

$$SG = \frac{\rho}{\rho_{\text{H}_2\text{O}@4^\circ\text{C}}}$$

units: dimensionless