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Outline of the talk

1. Brief introduction to modeling nanoflows over heterogeneous substrates

2. Details of molecular dynamics (MD) simulations (MD setup and parameter 

values, and movies)

3. Transverse and longitudinal orientation of slip flows

4. Tensorial slip at surfaces with periodic and nanoscale textures

5. Liquid flows over a trapped nanobubble

6. Conclusions
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Experimental measurements of the slip length Ls

• Typically slip length of water over hydrophobic surfaces is about  10 – 50 nm 

• Possible presence of nanobubbles at hydrophobic surfaces:   Ls ~ 10 mm

Rothstein, Review on slip flows over

Superhydrophobic surfaces (2010).                     Porous membranes?

• Factors that affect slip: 1)  Surface roughness

2)  Shear rate  (= slope of the velocity profile)

3)  Poor interfacial wettability  (weak surface energy)

4)  Nucleation of nanobubbles at hydrophobic surfaces 

5) Superhydrophobic surfaces  (Ls ~ 100 mm)

Stroock, Dertinger, 

Whitesides, Ajdari,

Patterning flows using 

grooved surfaces,

Analytical Chemistry 

74, 5306 (2002).

A micromixer for rapid mixing 

of two or three fluid streams



Part I:  Possibility of large slip lengths on patterned surfaces

(for simple liquids in the limit where Ls is shear rate independent)



Do gas nanobubbles significantly enhance the slip length ?

Nanobubble formation in water on hydrophobic surfaces: 
Lou et al., J. Vac. Sci. Tech. B 18, 2573 (2000)

Ishida et al., Langmuir 16, 6377 (2000) 

Tyrrell and Attard, PRL 87, 176104 (2001)

Steitz et al., Langmuir 19, 2409 (2003)

Continuum models of slip for surfaces with mixed BCs
Philip, J. Appl. Math. Phys 23 (1972)

Lauga and Stone, JFM 489, 55 (2003)

Cottin-Bizonne et al., Euro.Phys. J. E 15, 427 (2004)

Transverse flow configuration
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• Dependence of slip on period a and on orientation of shear flow ?

• Comparison of MD results with continuum predictions ?

finite slip velocity =

“wetting surface”

no shear stress =

infinite slip =

“non-wetting surface” 

1mm

Tapping mode 

AFM of water on 

hydrophobic wall

Steitz et al.

solid

gas

liquid

N.V. Priezjev, A.A. Darhuber, S.M. Troian, “Slip behavior in liquid films on surfaces of patterned wettability: 

Comparison between continuum and molecular dynamics simulations”, Phys. Rev. E 71, 041608 (2005).
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Details of molecular dynamics simulations

Total wetting/nonwetting area is the same; different spatial distribution



Interaction potentials:U velocity of the upper wall
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Details of molecular dynamics simulations
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Properties of the Lennard-Jones (LJ) potential
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• More slip for larger period a
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Transverse flow configuration: Slip length dependence on period a

• For a  30 MD recovers

continuum results

(similar to rough surface!) 

• At small period a ~ ,

deviations caused by

effective surface roughness

• At small period a ~ , 

Ls smaller than slip length   

on wettable stripes

Symbols=MD results

-2

wfsL 

Effective slip length  Ls

increases with the period a
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finite slip velocity =

“wetting surface”

no shear stress =

infinite slip =

“non-wetting surface” 

Priezjev, Darhuber and Troian, Phys. Rev. E 71, 041608 (2005).

Department of Mechanical and Materials Engineering Wright State University



• Agreement with 

continuum calculations 

for  a30

• At small period a~,

deviations explained

by Ls  S(q),

less order in the first

fluid layer near the wall

• Slip length             

increases with 

the period for a20

( )sL a

Longitudinal orientation: Effective slip length dependence on period a
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N.V. Priezjev, A.A. Darhuber, S.M. Troian, “Slip behavior in liquid films on surfaces of patterned wettability: 

Comparison between continuum and molecular dynamics simulations”, Phys. Rev. E 71, 041608 (2005).

No fitting parameters!



Thompson & Robbins, PRA, 1990.

Barrat & Boucquet, PRL, 1999.
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Structure factor:

• Reduction of molecular 

ordering above the 

wetting regions for 

small period a.

• Inverse value of the

structure factor peak

correlates well with

the slip length.

Longitudinal orientation: S(q) dependence on period a



• Slip length             increases with the period for a20( )sL a

• For the flow perpendicular to the stripes:

At small period a~, deviations from  

hydrodynamics caused by effective roughness 

of the surface potential.

• For the flow parallel to the stripes: 

At small period a~, deviations explained

by Ls  S(q), less order in the first

fluid layer near the wall.

• Excellent agreement between MD and hydrodynamic predictions

for periods a30, with no adjustable parameters. 

Important conclusions:

N.V. Priezjev, A.A. Darhuber, S.M. Troian, “Slip behavior in liquid films on surfaces of patterned wettability: 

Comparison between continuum and molecular dynamics simulations”, Phys. Rev. E 71, 041608 (2005).
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Influence of Confinement on Flow, Diffusion, and Boundary Conditions in Nano Channels:  
A Combined Quantum Dot Imaging and Molecular Dynamics Simulations Approach 

Nikolai Priezjev and Manoochehr Koochesfahani, Michigan State University (NSF-1033662)

Nonwetting regions

(low wall-fluid energy)

Wetting regions

(high wall-fluid 

energy)

a

N. V. Priezjev, “Molecular diffusion and slip boundary conditions at smooth surfaces with 

periodic and random nanoscale textures”, Journal of Chemical Physics 135, 204704 (2011).

Microscopic justification of the tensor formula-

tion of the effective slip boundary conditions: 

interfacial diffusion coefficient  D correlates 

well with the effective slip length Ls() as a 

function of the shear flow direction U.
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Shear flow over an array of parallel stripes:



Motivation for investigation of slip phenomena at liquid/solid interfaces

• What is the boundary condition (BC) for liquid on solid flow 

in the presence of slip? 

Still no fundamental understanding of slip or what is 

proper BC for continuum studies. Issue is very important 

in micro- and nanofluidics. Contact line motion. 

Ls

h liquid

solid wall

Top wall velocity U

slip γV  sL
Navier slip 

condition

• Effective slip in flows over anisotropic textured surfaces

O. Vinogradova and A. Belyaev, “Wetting, roughness and  

flow boundary conditions”, J. Phys.: Condens. Matter 23, 

184104 (2011).
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Details of molecular dynamics simulations

Fluid monomer density:  = 0.81  3

Thermal FCC walls with density w = 2.3  3

Wall-fluid interaction: wf =  and wf = 

Lennard-Jones 

potential:

• Thermostat to thermal walls only! 

Langevin thermostat applied to fluid

introduces a bias in flow profiles 

near patterned walls for 0 <  < 90

xm Friction term:
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Part I: Flow over periodic stripes; longitudinal and transverse velocity profiles

 = 90  = 90

 = 45

 = 45

 = 0

 = 0

Transverse flow            is maximum when  = 45

Lower patterned wall

a = stripe

period

Upper wall U = 0.1

U = upper 

wall speed

Longitudinal

component:

Transverse

component:
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• Eq.(1)

continuum prediction (red curves).

Bazant and Vinogradova, 

J. Fluid Mech. 613, 125 (2008).



Slip length as a function of angle  between flow orientation U and stripes

• For stripe widths a  30 MD 

recovers continuum results for

flows either  || or to stripes.

Priezjev, Darhuber and Troian, 

Phys. Rev. E 71, 041608 (2005).
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Non-wetting region

(low wall-fluid energy,

large slip length)

Wetting region

(high wall-fluid 

energy, small slip)

Flat FCC stationary

lower wall plane:

U=upper wall speed.

• For stripe widths  a / = O(10) 

MD reproduces slip lengths for

anisotropic flows over an array

of parallel stripes, see Eq.(1).
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Ratio of transverse and longitudinal components of slip velocity us versus 
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Non-wetting region
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

A correlation between interfacial diffusion coefficient D and slip length Ls 

a

U = 0

 = 0

 = 90

x

Bazant and Vinogradova,

J. Fluid Mech. 613, 125 (2008).

Microscopic justification of the tensor formulation of the 

effective slip boundary conditions: interfacial diffusion 

coefficient D correlates well with the effective slip length 

as a function of the shear flow direction U.
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Part II: Slip flow over flat surfaces with random nanoscale textures

 = areal fraction of wetting (δ = 1.0) lower wall atoms
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Additive friction from wetting 
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1 -  = fraction of nonwetting (δ = 0.1) lower wall atoms

Wall-fluid 

interaction:

• Slip length is isotropic

(finite size effects). 

• The variation of  Ls  is

determined by the

total area of wetting

regions.
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A correlation between interfacial diffusion coefficient Dxy and slip length Ls 

 = 1.0U = 0

 = areal fraction of wetting (δ = 1.0) wall atoms

1 -  = fraction of nonwetting (δ = 0.1) wall atoms

• When  > 0.6, the slip

length Ls  is proportional

to the interfacial diffusion

coefficient of fluid mono-

mers in contact with wall.

tDr xyxy  

2 4
Trajectory for  100

N. V. Priezjev, “Molecular diffusion and slip boundary conditions at smooth 

surfaces with periodic and random nanoscale textures”, J. Chem. Phys. 135, 204704 (2011). 



Important conclusions:

• Good agreement between MD and hydrodynamic results for anisotropic flows over 

periodically textured surfaces provided length scales  O(10 molecular diameters).

• Microscopic justification of the tensor formulation of the effective slip boundary 

conditions: interfacial diffusion coefficient  D correlates well with the effective slip 

length as a function of the shear flow direction.

• In case of random surface textures, the effective slip length is determined by the total 

area of wetting regions. When  > 0.6, Ls  is linearly proportional to the interfacial 

diffusion coefficient of fluid monomers in contact with periodic surface potential.
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Details of molecular dynamics simulations



The pinning mechanism of the three-phase contact line



The slip velocities and slip lengths for flows over surface-attached nanobubble



The slip velocities and slip lengths for flows over surface-attached nanobubble



Conclusions:

• We investigated the behavior of the local and effective slip lengths that describe shear

flows over nanobubbles attached to smooth solid surfaces using molecular dynamics       

simulations.

• Contact line at the gas-liquid interface can be pinned by the wettability step on a 

smooth substrate and the contact angle hysteresis depends strongly on the wettability 

contrast.

• The local slip length is finite at the gas-liquid interface and its spatial distribution 

becomes asymmetric due to deformation of the nanobubble under high shear.


