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Molecular diffusion and slip boundary conditions at smooth surfaces
with periodic and random nanoscale textures
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The influence of periodic and random surface textures on the flow structure and effective slip length
in Newtonian fluids is investigated by molecular dynamics (MD) simulations. We consider a situation
where the typical pattern size is smaller than the channel height and the local boundary conditions
at wetting and nonwetting regions are characterized by finite slip lengths. In the case of anisotropic
patterns, transverse flow profiles are reported for flows over alternating stripes of different wettabil-
ity when the shear flow direction is misaligned with respect to the stripe orientation. The angular
dependence of the effective slip length obtained from MD simulations is in good agreement with
hydrodynamic predictions provided that the stripe width is larger than several molecular diameters.
We found that the longitudinal component of the slip velocity along the shear flow direction is pro-
portional to the interfacial diffusion coefficient of fluid monomers in that direction at equilibrium. In
case of random textures, the effective slip length and the diffusion coefficient of fluid monomers in
the first layer near the heterogeneous surface depend sensitively on the total area of wetting regions.
© 2011 American Institute of Physics. [doi:10.1063/1.3663384]

I. INTRODUCTION

Modeling fluid flows over chemically or topographically
patterned substrates is important for micro- and nanofluidic
applications involving mixing1 and separation processes.2 As
the surface to volume ratio increases, the role of hydrody-
namic boundary conditions in determining fluid velocity pro-
files becomes dominant. It is well recognized now that the
classical no-slip boundary condition can, in principle, be vio-
lated and the velocity profiles can be significantly affected by
the interfacial slip.3 The degree of slip is usually quantified
in terms of the Navier slip length, which is defined as a dis-
tance between the real interface and imaginary plane where
the extrapolated tangential velocity component vanishes. The
magnitude of the slip length for smooth nonwetting surfaces
is typically on the order of tens of nanometers;4–8 however, in
special cases of nanoengineered superhydrophobic surfaces,
slip lengths in the micrometer range were reported.9–12 Al-
though the Navier-Stokes equation with slip boundary con-
ditions is often used to model small scale flows, the limits
of validity of the continuum description of complex flows at
nanometer scales remain not fully understood.3

In recent years, a number of molecular dynamics (MD)
studies have examined factors that determine the magnitude
of the slip length at interfaces between crystalline surfaces
and monatomic liquids.13–28 One of the most important con-
clusions is that the degree of slip strongly correlates with the
in-plane structure in the first fluid layer induced by the pe-
riodic surface potential.15 An estimate of the low-shear-rate
limit of the slip length can be obtained via the Green-Kubo
relation between the friction coefficient at the interface and
the time integral of the autocorrelation function of the lat-
eral force that acts on the adjacent fluid from the solid wall.18

In general, when the surface energy is weak, the slip length

is constant only at relatively low shear rates and it increases
nonlinearly at high shear rates.16 It was recently demonstrated
that the linear regime of slip holds when the slip velocity of
the first fluid layer is smaller than the diffusion rate of fluid
monomers over the distance between the nearest minima of
the periodic surface potential at equilibrium.29 It was also
found that at sufficiently high shear rates, the slip length be-
comes anisotropic for dense walls with weak surface energy;
and, in particular, the slip length increases when the flow is
oriented along the crystallographic axis of the wall lattice.29

Several studies considered the flow of a Newtonian fluid
over surfaces patterned with stripes of different wettability us-
ing both molecular dynamics and continuum simulations.30–33

In the presence of flow, a heterogeneous surface with mixed
boundary conditions induces spatial variations in the veloc-
ity profiles. The flow profiles averaged on length scales larger
than the typical pattern size can be used to define the effec-
tive slip length, which describes the flow away from the sur-
face. The comparative analysis between MD and continuum
simulations demonstrated that there is an excellent agreement
between the velocity profiles and effective slip lengths for
stripe widths larger than approximately 30 molecular diam-
eters for flow configurations either parallel or perpendicu-
lar to the stripe orientation.31 Later studies have shown that
similar conclusions hold for slip flows of Newtonian34, 35 and
polymeric36 fluids over periodically corrugated surfaces. In a
more general situation, when the mean flow direction is not
aligned with the symmetry axis of surface patterns, it is ex-
pected that the slip velocity will acquire a non-zero trans-
verse component. In MD simulations, the transverse veloc-
ity profiles were reported in force-driven flows over flat sur-
faces with asymmetric distribution of wetting regions33 and
in spiral flows inside a cylindrical channel.37 One of the goals
of the present study is to perform a detailed comparative
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analysis of the effective slip length and velocity fields in flows
around anisotropic textured surfaces using MD simulations
and recent analytical results.38–40

The Navier slip boundary condition for flows over ar-
bitrary patterned surfaces can be formulated in tensor form,
i.e., the apparent slip velocity vector is equal to the prod-
uct of normal traction and an interfacial mobility tensor.41–43

It was suggested that at the microscopic level, the mobility
tensor is related to the interfacial diffusivity per unit area.41

Recently, it was also proven that for steady noninertial flows
over surfaces perturbed by arbitrary periodic height and local
slip fluctuations, the mobility tensor is always symmetric.44

Using the theory of transport in heterogeneous media, rigor-
ous bounds on the effective slip length were obtained for ar-
bitrary two-component texture with given area fractions and
local slip lengths.45, 46 In particular, it was shown that paral-
lel (perpendicular) stripe orientation with respect to the mean
flow direction results in maximum (minimum) slip flow in a
thin channel.45 In case when the mean flow is not parallel or
perpendicular to stripes, the angular dependence of the effec-
tive slip length was derived analytically38, 41 and later verified
by lattice Boltzmann simulations.47 One of the motivations of
the current study is to examine the microscopic justification
of the tensor formulation of the Navier slip condition for sur-
faces with anisotropic textures.

In this paper, the velocity fields and diffusion of fluid
molecules near interfaces between simple fluids and surfaces
patterned with anisotropic and random textures are studied
by molecular dynamics simulations. For flows around paral-
lel stripes of different wettability, the transverse and longi-
tudinal velocity components and the effective slip length are
compared against hydrodynamic predictions. We will show
that the directional diffusion coefficient for fluid molecules in
contact with wall atoms correlates well with the effective slip
length as a function of the flow direction with respect to the
stripe orientation. In case of random wetting patterns, the ef-
fective slip length depends sensitively on the total area of wet-
ting regions, in agreement with simple physical arguments.

The rest of the paper is organized as follows. The de-
tails of molecular dynamics simulations, parameter values,
and thermostatting procedure are described in Sec. II. The re-
sults for the effective slip length at surfaces with periodic and
random textures and the numerical analysis of the interfacial
diffusion of fluid molecules are presented in Sec. III. The con-
clusions are given in Sec. IV.

II. DETAILS OF MOLECULAR DYNAMICS SIMULATION
MODEL

The schematic setup of the channel geometry and the ori-
entation of wetting and nonwetting regions of the stationary
lower wall are illustrated in Figure 1. The steady shear flow
is induced by the upper wall moving with a constant velocity
in the xy plane. The structure of three-dimensional flow fields
in the confined fluid is determined by the local boundary con-
ditions at the patterned lower wall and the orientation of the
upper wall velocity with respect to the stripe direction.

h

FIG. 1. A schematic representation of the channel geometry and surface pat-
terns indicated by the blue color (wetting regions) and white color (nonwet-
ting regions). Steady shear flow is induced by the upper wall moving with a
constant velocity U in the xy plane at an angle θ with respect to the x̂ direc-
tion. The lower patterned wall is stationary.

The pair interaction between fluid monomers (Nf = 6000)
is modeled via the truncated Lennard-Jones (LJ) potential

VLJ(r)= 4ε
[(σ

r

)12
−

(σ

r

)6 ]
, (1)

where ε and σ are the energy and length scales of the fluid
phase, and the cutoff radius is rc = 2.5σ . Wall atoms inter-
act with fluid monomers through a modified LJ potential with
adjustable strength of the attractive term

ṼLJ(r)= 4 ε
[(σ

r

)12
− δ

(σ

r

)6 ]
, (2)

where the parameter δ = 1.0 for wetting regions and
δ = 0.1 for nonwetting regions and the rest of the param-
eters are the same, i.e., εwf = ε, σ wf = σ , and rc = 2.5σ .
The wall atoms do not interact with each other. For the results
presented in Sec. III, the parameter δ = 1.0 was fixed for
the upper wall atoms, while the lower wall is either homoge-
neous (δ = 1.0 or δ = 0.1) or patterned with periodic stripes
or random wetting regions.

The solid walls are constructed of two layers of the
face-centered cubic (fcc) lattice with density ρw = 2.3σ−3.
Each layer is composed of 576 lattice sites arranged on the
(111) plane with [112̄] orientation parallel to the x̂ direction.
The nearest-neighbor distance between lattice sites within the
(111) plane is 0.85σ . The wall atoms are attached to the
lattice sites by harmonic springs. The system dimensions in
the xy plane (parallel to the confining walls) were kept fixed
Lx = 17.67σ and Ly = 20.41σ , and the distance between
wall lattice planes in contact with fluid molecules was set
h = 21.54σ . The fluid density is defined as a ratio of the
total number of fluid monomers to the volume accessible to
the fluid phase ρ = Nf /LxLy(h − σ ) = 0.81σ−3. Periodic
boundary conditions for fluid monomers and wall atoms were
imposed along the x̂ and ŷ directions. The motion of the up-
per wall with a constant velocity oriented at an angle θ with
respect to the x̂ axis was modelled by translating the fcc lat-
tice sites and applying periodic boundary conditions in the xy
plane at each time step. Figure 2 shows a snapshot of the fluid
phase confined between atomically smooth walls. In this par-
ticular case, the upper wall velocity is oriented perpendicular
to the stripe direction.

The motion of wall atoms was coupled to an external heat
bath by adding Langevin noise and friction terms to all three
components of the equations of motion, e.g., in the x̂ direction
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FIG. 2. A snapshot of 6000 fluid monomers (open blue circles) confined be-
tween atomistic walls patterned with wetting (filled gray circles) and nonwet-
ting (filled yellow circles) regions. The width of stripes at the lower stationary
wall is a = 4.42σ and the upper wall velocity is U = 0.1σ /τ .

the equation is given by

mw ẍi + mw �ẋi = −
∑
i �=j

∂ṼLJ ij

∂xi

− ∂Vsp

∂xi

+ fi , (3)

where the mass of a wall atom is mw = 100 m, the friction
coefficient is � = 2.0τ−1, and fi is a random force with
zero mean and variance 〈fi(0) fj(t)〉 = 2mkBT�δ(t)δij deter-
mined from the fluctuation-dissipation theorem. The temper-
ature of the Langevin thermostat is T = 1.1 ε/kB, where kB

is the Boltzmann constant. The wall atoms were tethered to
the fcc lattice sites under the harmonic potential Vsp = 1

2κ r2

with the spring stiffness coefficient κ = 2000ε/σ 2. It was
previously shown that a sufficiently large value of the stiff-
ness coefficient does not affect the slip length at the interface
between monatomic fluids and dense crystalline walls.23 The
equations of motion for wall atoms and fluid monomers were
solved using the fifth-order Gear predictor-corrector scheme48

with a time step �t = 0.005τ , where τ =
√

mσ 2/ε is the LJ
time scale. Thus, the oscillation time 2π

√
mw/κ ≈ 1.4τ of

wall atoms is much larger than the integration time step. Typ-
ical values for liquid argon are σ = 0.34 nm, ε/kB = 120 K,
and τ = 2.16 × 10−12 s.48

A common practice in non-equilibrium MD simulations
is to apply the Langevin thermostat only in the direction of
motion perpendicular to the plane of shear in order to main-
tain constant temperature of the fluid phase.15, 16 It is ex-
pected, however, that if the orientation of the upper wall ve-
locity is restricted to 0◦ < θ < 90◦ in the system shown in
Fig. 1, then the fluid flow near the lower patterned wall will
have non-zero components of the averaged velocity fields in
all spatial dimensions, and, therefore, the Langevin friction
term applied to fluid monomers might bias the flow profile.
To test the dependence of our results on the thermostatting
procedure, we performed simulations with a = 8.84 σ and
the upper wall velocity U = 0.1σ /τ oriented at θ = 45◦

relative to the x̂ direction for two cases where the Langevin
thermostat with � = 1.0τ−1 was applied to the equations of
motion for fluid monomers in the direction either perpendic-
ular to the plane of shear or parallel to the ẑ direction. After

averaging over thermal fluctuations, we observed a slight dif-
ference in the velocity profiles near the lower wall which re-
sulted in a discrepancy between slip lengths of about 0.5 σ . To
eliminate the uncertainty associated with the friction term, in
the present study, the Langevin thermostat was applied only
to the equations of motion for wall atoms. The viscous heat
in the fluid phase was efficiently removed via interaction of
fluid monomers with thermal wall atoms so that the fluid tem-
perature remained constant Tf = (1.10 ± 0.01)ε/kB, even at
the highest upper wall velocity U = 0.1σ /τ . A similar ther-
mostatting procedure in sheared fluids confined by thermal
walls was implemented in previous MD studies.27, 49, 50

In the present study, the simulations were performed at
relatively low shear rates γ̇ � 0.005τ−1, which required av-
eraging of the velocity profiles over long time intervals (up
to 106τ ) within horizontal bins of thickness z = 0.01σ .
Likewise, the fluid density profiles were computed within
narrow bins of thickness z = 0.01σ to resolve fine details
of the layered structure near interfaces. The structure fac-
tor was computed in the first fluid layer according to S(k)
= |∑N�

j=1 eik·rj |2/N�, where k is a two-dimensional wave vec-
tor, rj = (xj , yj ) is the position of the jth monomer, and N� is
the total number of monomers within the layer.15 The fluid
viscosity μ = (2.15 ± 0.15)ετσ−3 was previously found to
be rate independent for γ̇ � 0.072τ−1 and insensitive to the
temperature variation in the range of 1.1 ≤ TkB/ε ≤ 1.35.34

An estimate of the maximum value of the Reynolds number
based on U = 0.1 σ /τ and no-slip boundary conditions is Re
= ρhU/μ ≈ 0.77, which is clearly indicative of laminar flow
in the channel.

III. RESULTS

A. Fluid density and velocity profiles
for homogeneous walls

We first consider steady shear flow in the channel with a
homogeneous lower wall, which is either wetting (δ = 1.0)
or nonwetting (δ = 0.1). It is well known that the presence of
a flat crystalline surface promotes the formation of a layered
structure in the adjacent fluid (e.g., see Ref. 51). An example
of fluid density profiles is shown in Fig. 3(a). As is evident,
the fluid layering is most pronounced near interfaces, the am-
plitude of density oscillations gradually decays on distances
of about five molecular diameters away from the solid walls,
and the fluid density is uniform in the middle of the channel.

The interaction between fluid monomers and wall atoms
is controlled by the strength of the attractive term in the
LJ potential. When the parameter δ in Eq. (2) is reduced,
then the well depth of the potential function decreases and
the pairwise separation, where the potential energy reaches
a minimum value, increases. For comparison, the minimum
of the full LJ potential with δ = 1.0 in Eq. (2) occurs at
r = 6

√
2 σ ≈ 1.12σ and equals ṼLJ(1.12 σ )= −ε, while the

modified LJ potential with δ = 0.1 has a much lower well
depth ṼLJ(1.65 σ )= −0.01ε. Therefore, it is not surprising
that the amplitude of the first fluid layer near the nonwetting
lower wall in Fig. 3(a) is significantly reduced and its loca-
tion is shifted away from the wall. Note also that, due to a
pronounced fluid layering near the wetting lower wall, the
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FIG. 3. Averaged (a) density and (b) velocity profiles across the channel for
wetting δ = 1 (red circles) and nonwetting δ = 0.1 (black squares) lower
walls. The upper wall velocity in the x̂ direction is U = 0.1σ /τ . The ver-
tical axes at z/σ = − 6.67 and 14.87 coincide with the location of the fcc
lattice planes in contact with fluid molecules. The vertical dashed lines at
z/σ = − 6.17 and 14.37 indicate the location of liquid-solid interfaces.

amplitude of density oscillations near the upper wall is
slightly smaller in the wetting case. Finally, we have checked
that the density profiles reported in Fig. 3(a) for the upper wall
velocity U = 0.1σ /τ are the same as those computed in the
absence of shear flow (not shown).

The averaged fluid velocity profiles for wetting and non-
wetting lower walls are presented in Fig. 3(b). In both cases,
the velocity profiles are linear across the channel; however,
the slip velocity is much higher near the nonwetting lower
wall. A slight downward curvature in the velocity profile near
the nonwetting surface might be related to the fact that only
fluid monomers with relatively large velocity component in
the ẑ direction can penetrate more deeply into the solid wall
and, thus, the tangential velocity in that region is computed
from biased velocity distribution. To compute the slip length,
we define the location of liquid-solid interfaces (see verti-
cal dashed lines in Fig. 3) at the distance 0.5σ away from
the fcc wall lattice planes in contact with fluid monomers.
For flows over homogeneous walls, the slip length is deter-
mined from the linear fit to the velocity profiles excluding
regions of about 2σ near interfaces. Depending on the wall-
fluid interaction, the slip lengths are bw = (3.6 ± 0.8)σ for
wetting surfaces and bn = (156 ± 10)σ for nonwetting sur-
faces. Within the reported error bars, the slip lengths are in-
dependent of the shear flow orientation relative to the fcc wall
lattice. It was shown that at low shear rates, γ̇ � 0.005τ−1,
considered in the present study, the slip length at an interface
between smooth crystalline walls and monatomic fluids is rate
independent.16

B. Anisotropic slip lengths for periodically patterned
walls

We next study the effects of shear flow orientation and
stripe width on the flow structure in the channel with the
lower stationary wall patterned with alternating stripes of dif-
ferent wettability, as shown in Fig. 1. In this geometry, the tex-
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FIG. 4. Averaged longitudinal (upper set of curves) and transverse (lower set
of curves) velocity profiles for the indicated values of θ and stripe widths a =
0.74σ (left panel) and a = 8.84σ (right panel). The vertical axes coincide with
the location of the fcc lattice planes at z/σ = − 6.67 and 14.87. The vertical
dashed lines at z/σ = − 6.17 and 14.37 indicate liquid-solid interfaces.

tured lower wall induces wavy perturbations in simple shear
flow which penetrate into the fluid domain on a length scale
of about a stripe width, and the slip velocity at the lower
wall is not parallel to the upper wall velocity when 0◦ < θ

< 90◦. In this section, we only consider alternating stripes
of equal width, which are measured a = Lx/ n, where integer
n = 2, 4, 8, 12, and 24. Thus, in all cases examined, the stripe
width (a/σ = 8.84, 4.42, 2.21, 1.47, 0.74) is smaller than the
channel height h = 21.54σ ; and, therefore, the longitudinal
velocity profiles are expected to be linear across the channel
except in the region of about a near the lower wall. In what
follows, we denote the longitudinal component of the fluid
velocity profile (parallel to the upper wall velocity) by u||(z)
and the transverse component of the velocity profile by u⊥(z),
which is perpendicular to the direction of U.

The problem of anisotropic slip flow over an array of pe-
riodic stripes of mixed wettability was addressed analytically
assuming that the stripe width is much smaller than the fluid
domain.38–41 In particular, it was shown that the angular de-
pendence of the effective slip length is given by

Ls(θ ) = b⊥cos2θ + b‖sin2θ, (4)

where b⊥ and b|| are, respectively, slip lengths for flows per-
pendicular (θ = 0◦) and parallel (θ = 90◦) to the stripe
orientation.38, 40 If the local slip lengths at wetting and non-
wetting regions are finite and independent of the flow direc-
tion, then b|| > b⊥ and in the special case of stick-perfect slip
stripes b|| = 2 b⊥.40, 52 From the solution of the Stokes equa-
tion with mixed boundary conditions,39, 40 the ratio of slip ve-
locities in longitudinal and transverse directions can be calcu-
lated as a function of the flow orientation

us
⊥

us
||

= (b|| − b⊥)sinθ cosθ

b⊥cos2θ + b‖sin2θ
. (5)

In the limiting cases when the flow direction is perpendic-
ular or parallel to the stripe orientation or when the surface
is homogeneous (i.e., b|| = b⊥), the transverse slip velocity
in Eq. (5) vanishes. As an aside, the continuum analysis also
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FIG. 5. Variation of the effective slip length Ls/σ as a function of θ for the
indicated values of the stripe width. The MD data are shown by open circles.
The red curves are hydrodynamic predictions computed using Eq. (4).

predicts that the transverse velocity component is maximum
when θ = 45◦.39

Examples of longitudinal and transverse velocity pro-
files for the smallest (a = 0.74σ ) and largest (a = 8.84σ )
stripe widths are presented in Fig. 4 for selected values of θ .
In both cases, the longitudinal velocity component is max-
imum (minimum) when the upper wall velocity is parallel
(perpendicular) to the stripe orientation, and the transverse
flow is maximum when θ = 45◦, in agreement with the con-
tinuum analysis.39, 40 If the stripe width is about the molec-
ular size, the alternating surface potential [δ = 1.0 and 0.1 in
Eq. (2)] represents an effectively roughened surface for the
flow component perpendicular to the stripe orientation. As a
consequence, the location of the first fluid layer varies pe-
riodically above wetting and nonwetting regions [e.g., see
Fig. 3(a)], and the slip velocity along the x̂ direction (per-
pendicular to stripes) is reduced. In contrast, when the flow
is parallel to stripes, fluid monomers are transported along
homogeneous wetting or nonwetting regions, and the effect
of surface roughness is absent. This explains the relatively
large variation of the longitudinal slip velocity as a function
of the flow orientation for the stripe width a = 0.74σ . For the
largest stripe width a = 8.84 σ , the velocity profiles acquire
pronounced oscillations near the lower wall because of the
mismatch between the location of peaks in density profiles
above wetting and nonwetting regions [shown in Fig. 3(a)].
Similar effects were reported in the previous study where only
flows parallel and perpendicular to stripes were considered.31

For the results presented below, the effective slip length was
computed by extrapolating the linear part of the longitudinal
velocity profiles to zero velocity.

The angular dependence of the effective slip length for
the indicated values of the stripe width is presented in Fig. 5.
As expected, Ls monotonically increases as θ approaches 90◦.
For a given stripe width, the values b⊥ and b|| were deter-
mined from the longitudinal velocity profiles and then used in
Eq. (4) to compare the results of MD simulations with contin-
uum predictions (shown by red curves in Fig. 5). The agree-
ment between the MD data and continuum solution Eq. (4)
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FIG. 6. The ratio of transverse and longitudinal components of the slip ve-
locity as a function of θ . The MD data are shown by open circles. The solid
red curves are continuum predictions calculated using Eq. (5). The dashed
blue curve is Eq. (5) where b⊥, || are defined with respect to the location of
the first fluid layer (see text for details).

becomes progressively better as the stripe width increases up
to a = 8.84σ . It should be mentioned that these results do not
contradict the conclusion drawn from the previous study,31

which demonstrated that the agreement between continuum
analysis and MD simulations holds when the stripe width is
larger than about 30 molecular diameters. In the context of the
present study, this conclusion could be verified by comput-
ing Ls(θ ) directly from the solution of the Stokes equation for
the flow geometry shown in Fig. 1 with the local slip lengths
at wetting and nonwetting regions extracted from MD sim-
ulations. Such an analysis was not performed in the current
study.

As discussed above, the transverse flow appears when the
upper wall velocity is neither parallel nor perpendicular to the
stripe orientation. Next, we present a more detailed compar-
ative analysis of the transverse slip velocity at the lower wall
based on the MD data and the continuum solution Eq. (5). In
MD simulations, the longitudinal and transverse slip velocity
components of the first fluid layer were computed as follows:

us
⊥,|| =

∫ z1

z0

u⊥,||(z) ρ(z) dz
/ ∫ z1

z0

ρ(z) dz, (6)

where the limits of integration (z0 = −5.1σ and z1 = −5.8σ )
are defined by the width of the first peak in the density profile
above the patterned lower wall. The ratio us

⊥/us
|| as a func-

tion of θ is plotted in Fig. 6. The results show that although
the magnitude of the transverse slip velocity is largest when
θ = 45◦, the maximum angle between the upper wall veloc-
ity and the slip velocity occurs when θ < 45◦. For example,
this angle is about 25◦ for the stripe width a = 1.47 σ when
θ = 30◦. Further, the MD values b⊥(a) and b||(a) were used
in Eq. (5) to compute the ratio us

⊥/us
|| as a function of θ (see

red curves in Fig. 6). The continuum solution Eq. (5) is only
in qualitative agreement with the MD data. The discrepancy
might be attributed to the roughness effect discussed earlier
and to the fact that the stripe width is comparable to the fluid
molecular size. Another possible contributing factor is the
uncertainty in defining the exact location of the liquid-solid
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interface used for computing the effective slip length (e.g.,
see the vertical dashed lines in Fig. 4). Remember that the
position of the first fluid layer is displaced by about σ from
the fcc lattice plane. Thus, if the location of the interface is
taken at the position of the first fluid layer, then the effec-
tive slip lengths become b⊥, || → b⊥, || + 0.5σ . The corre-
sponding continuum solution Eq. (5) is shown by the blue
dashed curve in Fig. 6 when the stripe width is a = 4.42σ . No-
tice the small difference between continuum solutions, which,
in general, is expected to be negligible when b⊥, ||  0.5σ .
For completeness, the results for the smallest stripe width
a = 0.74σ are reported in Fig. 7. In this case, the dis-
crepancy between the MD data and continuum solutions
Eqs. (4) and (5) is most pronounced.

C. Interfacial diffusion near surfaces of patterned
wettability

A tensorial generalization of the Navier slip condition for
flows over anisotropic surfaces involves a relation between
the normal traction at the interface and fluid slip velocity via
an interfacial mobility tensor.41 In analogy with the theory
of Brownian motion, it was conjectured that the mobility of
fluid molecules near anisotropic surfaces is directly related to
the interfacial diffusivity per unit area.41 Simply put, it im-
plies that the effective slip length at the interface between
a Newtonian fluid and a textured surface is proportional to
the diffusion coefficient of fluid molecules near the surface.
In the present study, the diffusion coefficient was estimated
from two-dimensional trajectories of fluid monomers within
the first layer near the patterned wall at equilibrium (i.e., when
both walls are at rest).

The numerical analysis of the molecular displacement
was performed only for those fluid monomers that remained
in contact with the lower wall atoms (in the first fluid layer)
during the diffusion time interval. It should be noted that
it is important not to include fluid monomers further away
from the patterned wall because their diffusion in the xy
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FIG. 8. The mean square displacement of fluid monomers in the first layer
near the lower patterned wall with the stripe width a = 2.21σ , when both
walls are at rest. Each curve is computed by taking the component of the
displacement vector along a line oriented at angles θ = 0◦, 25◦, 45◦, 60◦,
90◦ with respect to the x̂ axis (from bottom to top). The dashed line with unit
slope is plotted for reference. The lower inset shows an expanded view of the
same data at large t. The upper inset shows a correlation between the in-plane
diffusion coefficient and the effective slip length for the same set of θ . The
straight blue line is the best fit to the data.

plane quickly becomes isotropic. For example, it was re-
cently shown that when the LJ fluid is confined in narrow slit-
pores (with the channel height of about 5σ ) and both walls
are patterned with stripes of different wettability, then the
mean square displacement (MSD) curves, which were aver-
aged over all fluid molecules in the direction either parallel or
perpendicular to stripes, nearly coincide with each other.53

Figure 8 shows the time dependence of the mean square
displacement of fluid monomers near the lower wall with
stripes of width a = 2.21σ . For each curve plotted in Fig. 8,
the displacement vector in the xy plane was projected onto
a line oriented at angles θ = 0◦, 25◦, 45◦, 60◦, 90◦ with re-
spect to the x̂ axis. We find that the diffusion is isotropic only
when the average displacement of fluid monomers is less than
the stripe width. When rθ � a, the mean square displacement
curves exhibit a gradual crossover to a linear regime (r2

θ ∼ t)
where the diffusion becomes anisotropic. Averaging over long
time periods (up to 2.6 × 107 τ ≈ 5.6 × 10−5 s) was required
to accumulate good statistics because of the relatively low
probability that a fluid monomer would remain in the first
layer for a long time, especially above the nonwetting re-
gions where the fluid density layering is reduced and fluid
monomers jump in and out of the first layer more frequently.

The diffusion coefficient was computed from the linear
slope of the mean square displacement as a function of time
(r2

θ = 4Dθ t) in the regime t � 145τ , which is shown in more
detail in the lower inset of Fig. 8. The slight nonlinearity in
MSD curves at large times is reflected in the error bars for the
diffusion coefficient. Most interestingly, as shown in the upper
inset of Fig. 8, there is an almost linear correlation between
the in-plane diffusion coefficient and the effective slip length
as a function of θ . It means that the longitudinal component of
the slip velocity along the shear flow direction is proportional
to the diffusion rate of fluid monomers along that direction
at equilibrium. The results in Fig. 8 provide support for the
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upper wall velocity is specified in the inset. The black dashed curve is Eq. (8)
with bw(φ = 1) = 3.6σ and bn(φ = 0) = 156σ .

microscopic justification of the tensorial formulation of the
Navier slip boundary condition in the case of Newtonian flu-
ids and molecular-scale surface textures. A similar correla-
tion between Dθ and Ls also holds for smaller stripe widths
(a = 0.74σ and a = 1.47σ ), although the difference in dif-
fusion rates along θ = 0◦ and 90◦ directions becomes smaller
when the stripe width decreases (not shown). For larger stripe
widths (a = 4.42σ and a = 8.84σ ), an accurate resolution of
the mean square displacement curves in the linear regime (rθ

> a) would require a long averaging time because of the low
probability that a fluid monomer will remain within the first
layer for a long time interval.

D. Slip flows over surfaces with random textures

In general, the problem of slip flow over surfaces with
mixed boundary conditions specified on randomly distributed
regions is difficult to treat either analytically or numerically.
An example of a statistical analysis of the effective slip
boundary condition for liquid flow over a plane boundary
with randomly distributed free-slip regions was presented in
Ref. 54. It was found that the effective slip length is propor-
tional to the typical size of free-slip regions and a factor that
depends on the fractional area coverage.54 In this section, we
consider a simple shear flow over a smooth substrate with
random distribution of wetting and nonwetting regions. The
system setup is essentially the same as described in Sec. II,
except that the parameter δ in Eq. (2) is randomly chosen to
be either 0.1 or 1.0 for the lower wall atoms. Each of the two
fcc lattice layers of the lower wall contains the same number
of weakly (δ = 0.1) or strongly (δ = 1.0) attractive atoms. In
what follows, a fraction of wall atoms with δ = 1.0 is de-
noted by φ. Due to limited computational resources, only one
realization of disorder was considered for each value of φ.

Figure 9 shows the effective slip length as a function of
φ for four orientations of the upper wall velocity relative to
the lower wall. As expected, Ls decreases with increasing the
total area of wetting regions. Note that for each value of φ, the
flow is almost isotropic; the slight discrepancy is most prob-
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FIG. 10. The mean square displacement of fluid monomers in the first layer
near the lower wall with φ = 0, 0.08, 0.58, 0.75, 1.0 (from left to right)
when U = 0. The dashed line with unit slope is plotted as a reference. The
inset shows a typical trajectory of a fluid monomer for about 100τ near the
wetting wall φ = 1.0. The positions of the fcc lattice atoms in the xy plane
are denoted by open circles.

ably due to finite size effects. When φ = 0.5, the averaged
effective slip length Ls ≈ 7.0σ is between b⊥ and b|| for any
value of the stripe width reported in Figs. 5 and 7, which con-
firms earlier conclusions that parallel (perpendicular) stripes
attain maximum (minimum) slippage. In the limiting cases
φ → 0 or φ → 1, the fluid velocity fields near the lower wall
are parallel to the xy plane, and the total friction coefficient
(the ratio of fluid viscosity to slip length) can be estimated
by simply adding contributions from wetting and nonwetting
areas as follows:

μ

Ls(φ)
= μφ

bw

+ μ (1 − φ)

bn

, (7)

where bw and bn are, respectively, the slip lengths for wetting
(φ = 1) and nonwetting (φ = 0) surfaces. This immediately
gives the effective slip length as a function of φ

Ls(φ) = bw bn

φ bn + (1 − φ) bw

. (8)

As shown in Fig. 9, the agreement between the MD data and
Eq. (8) is quite good for all φ in the range [0, 1]. However,
this correspondence might, in general, not hold at intermedi-
ate values of φ and larger system size in the x̂ and ŷ directions
because of the spatial variation of velocity profiles induced by
the heterogeneous surface. Interestingly, the formula for the
effective friction coefficient, Eq. (7), also accurately describes
hydrodynamic flows along alternating stripes with local slip
lengths that are larger than the system size.30, 55 In addition,
it was shown numerically that an interpolation formula like
Eq. (7) predicts the effective slip length for composite inter-
faces which consist of periodically distributed solid and gas
areas.56

Similar to the analysis of the interfacial diffusion pre-
sented in Sec. III C, we evaluate the in-plane diffusion co-
efficient in the absence of shear flow for fluid monomers in
the first layer near the lower wall for the same realization
of disorder as in Fig. 9. As an example, a typical trajectory
projected onto the xy plane is shown in the inset of Fig. 10.
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It can be seen that when φ = 1, the diffusive motion of a
fluid monomer in contact with lower wall atoms is strongly
influenced by the periodic surface potential; most of the time
the monomer resides near the local minima of the surface po-
tential. In this case, the surface-induced structure in the first
fluid layer is quantified by a distinct peak in the structure fac-
tor at the main reciprocal lattice vector S(8.53σ−1, 0) ≈ 1.7,
which is comparable to the height of a circular ridge S(2π /σ )
≈ 2.9 characteristic of the short range order. As the fraction
of wetting regions decreases, the amplitude of density oscil-
lations near the lower wall is reduced [see Fig. 3(a)], trajecto-
ries of fluid monomers become less affected by the corruga-
tion of the random surface potential, and the time interval be-
tween jumps in and out of the first fluid layer decreases. When
φ � 0.08, the in-plane structure factor, estimated in the first
fluid layer at equilibrium, does not contain any peaks at the
reciprocal lattice vectors.

The mean square displacement curves as a function of
time are displayed in Fig. 10 for selected values of φ. It is
apparent that the diffusion becomes faster as the total area of
nonwetting regions increases. The in-plane diffusion coeffi-
cient was estimated from the Einstein relation r2

xy = 4Dxyt

when t � 6τ . As shown in Fig. 11, the diffusion coefficient
gradually varies between two values obtained for homoge-
neous surfaces with φ = 0 and φ = 1. Furthermore, a cor-
relation between the effective slip length (averaged over four
orientations of the mean flow) and the in-plane diffusion co-
efficient is presented in the inset of Fig. 11. These data in-
dicate a nearly linear dependence between Ls and Dxy when
the fraction of wetting regions is large, and, as discussed ear-
lier, there is a strong coupling between the diffusion of fluid
monomers in the first layer and the periodic surface potential.
In the opposite limit of small φ, the net adsorption energy
is reduced and the in-plane diffusion of fluid monomers is
mostly dominated by the interaction with its fluid neighbors.
In this regime, the effective slip length increases rapidly as the
fraction of wetting regions decreases.

IV. CONCLUSIONS

In this study, molecular dynamics simulations were per-
formed in order to investigate the effective slippage and
molecular diffusion at surfaces patterned with periodic or ran-
dom textures. In our setup, the typical size of surface pat-
terns is smaller than the channel dimensions, and the local
boundary conditions at homogeneous wetting or nonwetting
surfaces are described by finite slip lengths. Particular atten-
tion was paid to the implementation of a thermostatting pro-
cedure that does not bias flow profiles and diffusion of fluid
monomers.

For flows over surfaces patterned with stripes of differ-
ent wettability, the heterogeneous surfaces induce wavy per-
turbations in velocity profiles and the slip velocity acquires
a transverse component. In this case, the effective slip length
depends on the shear flow direction with respect to the stripe
orientation. We found that the angular dependence of the ef-
fective slip length computed by molecular dynamics simula-
tions agrees well with the analytical solution of the Stokes
equation provided that the stripe width is larger than sev-
eral molecular diameters. At the same time, however, the ra-
tio of the transverse and longitudinal components of the slip
velocity agrees only qualitatively with hydrodynamic predic-
tions. Furthermore, the interfacial diffusion coefficient of fluid
molecules correlates well with the effective slip length as a
function of the shear flow direction. The numerical analysis
was performed only for fluid monomers that remain in con-
tact with the wall atoms during the diffusion time interval.
These findings lend support for the microscopic justification
of the tensor formulation of the effective slip boundary con-
ditions for noninertial flows of Newtonian fluids over smooth
surfaces with nanoscale anisotropic textures.

In case of random surface textures, the simulation re-
sults and simple physical arguments show that the effective
slip length is determined by the total area of wetting regions.
When the fraction of wetting regions is large, the diffusive
motion of fluid monomers is strongly influenced by the peri-
odic surface potential, and the effective slip length is nearly
proportional to the in-plane diffusion coefficient at equilib-
rium. In the opposite limit of small wetting areas, the dif-
fusion of fluid monomers is less affected by the corrugation
of the surface potential, and the effective slip length depends
sensitively on the number of strongly attractive wall atoms.
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