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The results obtained from molecular dynamics simulations of the friction at an interface between
polymer melts and weakly attractive crystalline surfaces are reported. We consider a coarse-grained
bead-spring model of linear chains with adjustable intrinsic stiffness. The structure and relaxation
dynamics of polymer chains near interfaces are quantified by the radius of gyration and decay of the
time autocorrelation function of the first normal mode. We found that the friction coefficient at small
slip velocities exhibits a distinct maximum which appears due to shear-induced alignment of semi-
flexible chain segments in contact with solid walls. At large slip velocities, the friction coefficient is
independent of the chain stiffness. The data for the friction coefficient and shear viscosity are used
to elucidate main trends in the nonlinear shear rate dependence of the slip length. The influence of
chain stiffness on the relationship between the friction coefficient and the structure factor in the first
fluid layer is discussed. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4728106]

I. INTRODUCTION

Understanding the interfacial rheology of complex flu-
ids is important in many processes relevant to technologi-
cal applications including polymer processing,1, 2 boundary
lubrication,3 and dewetting of polymer films.4 Numerous
experimental studies have demonstrated that flow velocity
profiles in nanoconfined systems can be significantly influ-
enced by slip at polymer-solid interfaces.5, 6 The measure of
slippage is the so-called slip length, which is defined as the
distance between the physical interface and imaginary plane
where the extrapolated velocity profile reaches the substrate
velocity. During the last two decades, the dependence of
the slip length on flow conditions and material properties of
substrates was extensively investigated by molecular dynam-
ics (MD) simulations for monatomic7–26 and polymeric27–45

fluids.
In the case of simple shear flow illustrated schematically

in Fig. 1, the shear stress is the same in the bulk of the chan-
nel and at the interface; and, therefore, the slip length can be
calculated from the ratio of the fluid viscosity to the friction
coefficient at the interface according to

Ls = μ

k
, (1)

where the friction coefficient k is defined by the relation be-
tween the slip velocity and wall shear stress.46 At equilibrium,
both the fluid viscosity47, 48 and friction coefficient12, 16, 24, 49

can be estimated from the Green-Kubo relations, and the slip
length in the limit of zero shear rate is then computed from
Eq. (1). In the presence of flow, the fluid viscosity and fric-
tion coefficient might depend on shear rate and slip velocity
respectively; and, as a result, the slip length is often a non-
linear function of shear rate.10, 14, 22–24, 36, 38, 42 For example, it
was recently shown that at an interface between unentangled
polymer melts and passive surfaces (no chemical bonds with
the surface and weak wall-fluid interaction energy), the slip
length passes through a local minimum at low shear rates and

then increases rapidly at higher shear rates.36, 42 This non-
monotonic behavior was explained by computing the rate-
dependent viscosity and the friction coefficient that undergoes
a transition from a constant value to the power-law decay as a
function of the slip velocity.36, 42 One of the motivations of
the present study is to examine whether these conclusions
hold for different simulation ensembles and intramolecular
potentials.

In the past two decades, a number of MD studies have
demonstrated that the degree of slip at the interface between
molecular liquids and crystalline surfaces depends on the
structure of the first fluid layer in contact with the peri-
odic surface potential.9, 12–16, 36, 39, 42 In general, the interfacial
slip is suppressed with increasing height of the peak in the
fluid structure factor computed at the main reciprocal lattice
vector. In turn, the in-plane order within the adjacent fluid
layer is determined by several factors, including the com-
mensurability of the liquid and solid structures,9, 12–14, 42 wall-
fluid interaction energy,9, 12, 14, 18, 42 surface rigidity,9, 15, 19, 42

molecular structure,16, 28, 35, 42, 43 and fluid pressure.11, 28, 39, 42

Interestingly, recent simulation results have shown that the
friction coefficient in the linear slip regime is a function of
a combined variable that is a product of the height of the main
peak in the structure factor and the contact density of the first
fluid layer near the solid wall.42 However, at present, there ex-
ists no exact relationship between the friction coefficient (or
the slip length) and the microscopic properties of the liquid-
solid interface.

The formation of the interfacial fluid layer and hydro-
dynamic boundary conditions can be significantly affected
by the polymer chain architecture. For instance, several MD
studies have reported flow profiles with a finite slip velocity
in thin alkane films where stiff polymer chains tend to align
in layers parallel to the surface.27, 31–33 On the other hand, a
weaker density layering near the wall and pronounced slip-
page were observed for branched alkane molecules.34 No-
tably, it was demonstrated that upon increasing the length
of linear, freely-jointed chains, the structure of the first fluid
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FIG. 1. A schematic view of the Couette flow configuration with slip at
the lower and upper walls. Steady shear flow is generated by the upper
wall moving with a constant velocity U in the x̂ direction while the lower
wall is at rest. The slip length and the slip velocity are related via Vs

= γ̇ Ls , where γ̇ is the shear rate computed from the slope of the velocity
profile.

layer near a solid wall is reduced, resulting in smaller values
of the friction coefficient and larger slip lengths at low shear
rates.35 Later, it was found that the existence and location of
a double bond along the backbone of linear oligomers affect
the structure of the interfacial fluid layer near crystalline alu-
minum walls and lead to either negative or large positive slip
lengths.41 More recently, it was shown that slip velocity is
reduced for liquids which consist of molecules that can eas-
ily conform their atoms into low-energy sites of the substrate
potential.43 Despite extensive research on the fluid structure
and shear response in thin polymer films, it is often difficult
to predict even qualitatively the influence of liquid molecular
structure on the interfacial slip.

In this paper, we investigate the effect of chain bending
stiffness on the fluid structure and friction coefficient at in-
terfaces between linear polymers and crystalline surfaces. We
will show that the relaxation dynamics near weakly attractive
surfaces is significantly slowed down for stiffer chains at equi-
librium. The orientation of semiflexible chains in shear flow
leads to the enhanced density layering away from the walls
and partial alignment of extended chain segments in the first
fluid layer. It will be demonstrated that the shear-induced or-
dering of the chain segments produces a distinct maximum in
the liquid structure factor and the friction coefficient at small
slip velocities. Finally, the characteristic features in the shear
rate dependence of the slip length are interpreted in terms of
the shear-thinning viscosity and the dynamic friction coeffi-
cient.

The rest of this paper is organized as follows. The de-
tails of molecular dynamics simulations, interaction poten-
tials, and equilibration procedure are described in Sec. II.
The simulation results are presented in Sec. III. More specif-
ically, the chain conformation and relaxation dynamics are
analyzed in Subsection III A, examples of density and ve-
locity profiles are presented in Subsection III B, shear vis-
cosity and slip lengths are reported in Subsection III C, the
velocity dependence of the friction coefficient is examined in
Subsection III D, and, finally, the fluid structure near solid
walls is considered in Subsection III E. Brief conclusions are
given in the last section.

II. MOLECULAR DYNAMICS SIMULATION MODEL

We consider a coarse-grained bead-spring model of un-
entangled polymer melt, which consists of M = 480 linear
chains of N = 20 beads (or monomers) each. In this model
any two fluid monomers interact via the truncated Lennard-
Jones (LJ) potential

VLJ (r) = 4 ε
[(σ

r

)12
−

(σ

r

)6 ]
, (2)

where ε and σ are the energy and length scales of the fluid
phase. The cutoff radius rc = 2.5σ and the total number of
fluid monomers Nf = 9600 are fixed throughout all simula-
tions. Similarly, fluid monomers interact with wall atoms via
the LJ potential with the following parameters εwf = 0.8ε,
σ wf = σ , and rc = 2.5σ .

Any two consecutive beads in a polymer chain inter-
act through the finitely extensible nonlinear elastic (FENE)
potential50

VFENE(r) = −ks

2
r2
o ln

[
1 − r2/r2

o

]
, (3)

with the standard parameters ks = 30εσ−2 and ro = 1.5σ .51

The combination of LJ and FENE potentials yields an effec-
tive bond potential between the nearest-neighbor beads with
the average bond length b = 0.97σ .51 This bond potential is
strong enough to prevent chain crossing and breaking even at
the highest shear rates considered in the present study. In ad-
dition, the flexibility of polymer chains is controlled by the
bending potential as follows:

Ubend (θ ) = kθ (1 − cos θ ), (4)

where kθ is the bending stiffness coefficient and θ is the angle
between two consecutive bonds along a polymer chain.52 In
the present study, the bending stiffness coefficient was varied
in the range 0 ≤ kθ ≤ 3.5ε. A snapshot of the confined poly-
mer melt that consists of semiflexible linear chains with the
bending coefficient kθ = 2.5ε is shown in Figure 2.
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FIG. 2. Instantaneous positions of fluid monomers (open blue circles) and
fcc wall atoms (filled gray circles) at equilibrium (i.e., both walls are at rest).
Each monomer belongs to a polymer chain (N = 20) with the bending stiff-
ness coefficient kθ = 2.5ε. Seven chains are indicated by thick solid lines and
filled black circles. The fluid monomer density is ρ = 0.91σ−3 and the wall
atom density is ρw = 1.40 σ−3.
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In order to remove viscous heating generated in the shear
flow, the motion of fluid monomers was coupled to an external
heat bath via a Langevin thermostat53 applied in the ŷ direc-
tion to avoid bias in the shear flow direction (the x̂ direction).
This is a standard thermostatting procedure often used in MD
simulations of sheared fluids.9, 10, 28, 54, 55 Thus, the equations
of motion for fluid monomers are summarized as follows:

mẍi = −
∑
i �=j

∂Vij

∂xi

, (5)

mÿi + m�ẏi = −
∑
i �=j

∂Vij

∂yi

+ fi , (6)

mz̈i = −
∑
i �=j

∂Vij

∂zi

, (7)

where � = 1.0 τ−1 is the friction coefficient that con-
trols the damping term, Vij is the total interaction poten-
tial, and fi is a random force with zero mean and variance
〈fi(0)fj(t)〉 = 2mkBT�δ(t)δij obtained from the fluctuation-
dissipation theorem. The Langevin thermostat temperature is
set T = 1.1ε/kB, where kB refers to the Boltzmann constant.
The equations of motion were solved numerically using the
fifth-order Gear predictor-corrector algorithm56 with a time
step �t = 0.005 τ , where τ =

√
mσ 2/ε is the LJ time. Typical

values of the length, energy, and time scales for hydrocarbon
chains are σ = 0.5 nm, ε = 30 meV, and τ = 3 × 10−12 s.56

The polymer melt is confined between two crystalline
walls as illustrated in Figure 2. Each wall consists of
1152 atoms distributed between two layers of the face-
centered cubic (fcc) lattice with density ρw = 1.40σ−3. For
computational efficiency, the wall atoms are fixed rigidly to
the wall lattice sites, which form two (111) planes with [112̄]
orientation parallel to the x̂ direction. The nearest-neighbor
distance between the lattice sites within the (111) plane is
d = 1.0σ and the first reciprocal lattice vector in the x̂ di-
rection is G1 = (7.23σ−1, 0). The channel dimensions in the
xy plane are measured to be Lx = 20.86σ and Ly = 24.08σ .
Periodic boundary conditions were applied along the the x̂

and ŷ directions parallel to the solid walls.
In our simulations, the distance between the wall lattice

planes, which are in contact with the fluid phase, was fixed
at h = 22.02σ . Hence, the volume accessible to the fluid
phase corresponds to the fluid monomer density ρ = Nf/LxLy

(h − σ ) = 0.91σ−3; and, in the absence of shear flow, the
resulting fluid pressure and temperature are 1.0εσ−3 and
1.1ε/kB, respectively. In the present study, the relatively low
polymer density (or normal pressure) was chosen based on
the results from our previous study where it was shown
that for weak wall-fluid interactions and ρ ≤ 1.02σ−3 (or P
≤ 5.0εσ−3), the fluid velocity profiles remain linear in a wide
range of shear rates.36 In contrast, it was demonstrated that at
higher polymer densities (or pressures), the velocity profiles
acquire a pronounced curvature near the wall and the relax-
ation of flexible polymer chains in the interfacial region be-
comes very slow.39

The system was first equilibrated for about 5 × 104τ

while both walls were at rest. Then, the velocity of the upper

wall was increased gradually up to a target value, followed
by an additional equilibration period of about 5 × 104τ . In
this study, the upper wall velocity was varied over about three
orders of magnitude 0.005 ≤ Uτ /σ ≤ 5.5. Once the steady
shear flow was generated, the velocity, density, and temper-
ature profiles were averaged within horizontal bins of thick-
ness �z = 0.01σ for a time period up to 5 × 105τ . At the
lowest upper wall speed, U = 0.005σ /τ , the velocity profiles
were computed in 24 independent systems for the total time
period of about 5 × 106τ . An upper estimate of the Reynolds
number at high shear rates is Re = ρhU/μ = O(10), which is
indicative of laminar flow conditions in the channel.

We finally note that MD simulations were also performed
at a constant normal load, where the distance between the
walls was allowed to vary under the constant normal pressure
P⊥ = 1.0εσ−3 applied to the upper wall. However, we did not
observe any qualitatively new behavior; and for the sake of
brevity, these results are not reported in the present study.

III. RESULTS

A. Chain conformation and relaxation dynamics

The spatial configuration of polymer chains is well char-
acterized by the radius of gyration, which is defined as the
average distance between monomers in a polymer chain and
its center of mass as follows:

R2
g = 1

N

N∑
i=1

(ri − rcm)2, (8)

where ri is the position vector of the ith monomer, N = 20
is the number of monomers per chain, and rcm is the chain
center of mass defined as

rcm = 1

N

N∑
i=1

ri . (9)
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FIG. 3. The ensemble averaged x̂, ŷ, and ẑ components of the radius of gy-
ration Rgx (�), Rgy (�), Rgz (�), and the total radius of gyration Rg (◦) as a
function of kθ for polymer chains (a) in contact with the solid walls and (b) in
the bulk region. The simulations were performed at the constant fluid density
ρ = 0.91σ−3 while both walls were at rest.
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Figure 3 shows the radius of gyration and its components
along the x̂, ŷ, and ẑ directions as a function of the bend-
ing stiffness coefficient. The chain statistics were collected
in the interfacial regions (where at least one monomer in a
chain is in contact with wall atoms) and in the middle of the
channel (the chain center of mass is located further than 6σ

away from the walls). As expected, in both cases Rg increases
with increasing chain stiffness. Note that even at the largest
value of the bending stiffness coefficient kθ = 3.5ε, the size of
polymer chains is smaller than the channel dimensions. The
simulation results in Fig. 3 indicate that in the bulk region
the chain configuration is isotropic, while near the interfaces
polymer chains become flattened, i.e., Rgz < Rgx ≈ Rgy, which
is in agreement with previous MD studies.57–59 It is also ap-
parent that fully flexible chains in contact with the walls are
packed on average within the first two fluid layers [2Rgz ≈ 2σ

for kθ = 0 in Fig. 3(a)]. In contrast, semiflexible chains extend
up to about three molecular diameters from the walls. Visual
inspection of the polymer chains in the interfacial regions re-
vealed that the conformation of semiflexible chains consists
of locally extended segments within the first fluid layer and
segments of several monomers oriented away from the walls.
Finally, regardless of the chain stiffness, the total radius of
gyration is nearly the same in the bulk and close to the walls
due to the relatively weak wall-fluid interaction energy.

The local relaxation dynamics in confined polymer films
can be described by the decay of the time autocorrelation
function of normal modes.39, 58, 60, 61 By definition, the nor-
mal coordinates for a free polymer chain that consists of N
monomers are given by

Xp(t) = 1

N

N∑
i=1

ri(t) cos
pπ (i − 1)

N − 1
, (10)

where ri is the position vector of the ith monomer in the chain,
and p = 0, 1, . . . , N − 1 is the mode number.51, 58, 62 The
longest relaxation time corresponds to the first mode p = 1,
i.e., to the relaxation of the whole chain.62 The normalized
time autocorrelation function for the first normal mode is then
defined as follows:

C1(t) = 〈X1(t) · X1(0)〉/〈X1(0) · X1(0)〉. (11)

In our study, the autocorrelation function [Eq. (11)] was com-
puted separately in the interfacial regions (where the chain
center of mass is confined within 3σ from the walls) and in
the bulk of the channel where the fluid density is uniform (the
center of mass is located at least 6σ away from the walls). An
important aspect is that the autocorrelation function was av-
eraged only for those polymer chains whose centers of mass
remained within either the interfacial or bulk regions during
the relaxation time interval.

Figure 4 shows the relaxation of the time autocorrelation
function at equilibrium (i.e., when both walls are at rest) for
selected values of the bending stiffness coefficient. As is ev-
ident from Fig. 4(a), the relaxation rate of polymer chains in
the bulk region decreases with increasing bending stiffness. A
similar effect was reported previously for linear bead-spring
chains with variable bending rigidity,63 indicating that the re-
orientation dynamics in the melt is slowed down for more
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FIG. 4. The time autocorrelation function of the first normal mode Eq. (11)
for polymer chains (a) in the bulk region and (b) near the walls for several
values of the bending stiffness coefficient. The inset shows the relaxation time
of polymer chains in the bulk.

rigid polymer chains. In our study, the decay rate of the auto-
correlation function in the bulk is well described by the expo-
nential function C1(t) = exp(−t/τ1), where τ 1 is the charac-
teristic relaxation time. The inset in Fig. 4(a) presents the vari-
ation of τ 1 as a function of the bending stiffness coefficient.
The inverse relaxation time, 1/τ 1, is related to the characteris-
tic shear rate, above which the shear viscosity is expected to
exhibit non-Newtonian behavior (see discussion below). We
note that for stiffer chains, the estimated shear rate is about
2.5 × 10−4τ−1, which is about the lowest shear rate accessible
in coarse-grained MD simulations (without excessive compu-
tational time requirements).

In contrast, the decay in time of the autocorrelation func-
tion is much slower for semiflexible polymer chains in the in-
terfacial regions, see Fig. 4(b). Similar results were observed
previously in MD simulations of freely-jointed 5-mers ad-
sorbed on weakly physisorbing surfaces, i.e., the relaxation
time of adsorbed chains is about an order of magnitude larger
than in the bulk.60 In our setup, the relaxation time of flex-
ible chains in the interfacial region is only slightly larger
than in the bulk, which means that the relaxation dynamics is
weakly affected by the substrate. With increasing chain stiff-
ness, however, the rotational relaxation is significantly slowed
down. The data shown in Fig. 4(b) cannot be well fitted by the
single exponential function. We comment that the typical re-
laxation time for polymer chains in the interfacial regions was
used to determine the time interval for averaging the radius of
gyration and bond orientation. It should also be mentioned
that test simulations of polymer chains with larger stiffness
coefficients, kθ = 4.0ε and 4.5ε, have shown that their relax-
ation dynamics near interfaces is extremely slow and cannot
be accurately resolved (results not reported).

B. Fluid density, velocity, and temperature profiles

The averaged monomer density profiles are presented
in Fig. 5 for fully flexible (kθ = 0.0ε) and semiflexible
(kθ = 3.0ε) polymer chains at small (U = 0.01σ /τ ) and large
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FIG. 5. Averaged monomer density profiles near the lower stationary wall
for the indicated values of the upper wall velocity U and ρ = 0.91σ−3. The
bending stiffness coefficients are (a) kθ = 0.0ε and (b) kθ = 3.0ε. The left
vertical axis at z = −12.29σ coincides with the fcc lattice plane in contact
with the polymer melt. The vertical dashed line at z = −11.79σ denotes the
location of the liquid-solid interface.

(U = 4.0σ /τ ) upper wall velocities. Near the solid walls,
these profiles exhibit typical density oscillations that grad-
ually decay to a uniform profile in the middle of the chan-
nel. Notice that the magnitude of the first peak in the density
profiles (defined as the contact density) is higher for stiffer
polymer chains. For example, the contact density is
ρc = 3.19σ−3 for flexible chains and ρc = 3.44σ−3 for
kθ = 3.0ε when the upper wall velocity is U = 0.01σ /τ in
Fig. 5. This result, at first glance, appears to be somewhat
counterintuitive because one might expect that flexible chains
can pack more effectively near a flat surface. However, with
increasing bending rigidity, the persistence length of poly-
mer chains increases; and, therefore, the first fluid layer con-
tains more extended chain segments. When U = 0.01σ /τ in
Fig. 5, the average number of consecutive monomers per
polymer chain in the first fluid layer is Nseg ≈ 3.1 for flex-
ible chains and Nseg ≈ 5.2 for kθ = 3.0ε. It turns out that
these locally extended chain segments arrange themselves
more tightly near the surface. We also note that similar trends
in the fluid density layering were reported in other coarse-
grained MD simulations; namely, that with increasing length
of (semi)flexible polymer chains, the amplitude of density os-
cillations near a solid wall becomes (larger) smaller.32, 57

As shown in Fig. 5(a), the height of the density peaks in
the case of flexible chains is reduced at the higher upper wall
speed U = 4.0σ /τ . At these flow conditions, the slip veloc-
ity of the first fluid layer is relatively large (of about 1.0σ /τ ),
and the temperature of the fluid near the walls is higher than
the temperature of the Langevin thermostat, leading to a re-
duced density layering. This is consistent with the results of
previous MD studies where the shear response of thin poly-
mer films was examined in a wide range of shear rates.36, 39, 42

Interestingly, while the amplitude of the first two peaks in the
density profile for semiflexible chains (kθ = 3.0ε) is also re-
duced at the higher upper wall speed U = 4.0σ /τ , the ori-
entation of more rigid chain segments along the shear flow
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FIG. 6. Averaged normalized velocity profiles for the upper wall speeds
(a) U = 0.005σ /τ and (b) U = 0.5σ /τ and bending stiffness coefficients
kθ = 0.0ε (black lines), kθ = 2.0ε (red lines), and kθ = 3.0ε (blue lines).
The vertical axes coincide with the location of the fcc lattice planes (at z/σ
= −12.29 and 9.73). The vertical dashed lines (at z/σ = −11.79 and 9.23)
indicate reference planes for computing the slip length.

direction produces slightly higher density in the 3rd, 4th, and
5th fluid layers [see Fig. 5(b)].

The representative velocity profiles are plotted in Fig. 6
for the lowest U = 0.005σ /τ and intermediate U = 0.5σ /τ
upper wall speeds and kθ = 0.0ε, 2.0ε, and 3.0ε. For
U = 0.005σ /τ , despite extensive averaging, the data remain
noisy because the average flow velocity is much smaller than
the thermal fluid velocity vT = kBT /m. In all cases, the ve-
locity profiles are anti-symmetric with respect to the center of
the channel and linear except within about 2σ near the walls.
Surprisingly, the dependence of slip velocity on bending stiff-
ness shows opposite trends for the reported upper wall speeds;
namely, the slip velocity for flexible chains is smaller for
U = 0.005σ /τ in Fig. 6(a), while it is larger for U = 0.5σ /τ
in Fig. 6(b). This result illustrates that the effect of chain stiff-
ness on the interfacial slip strongly depends on flow condi-
tions. In what follows, the shear rate was extracted from the
linear part of velocity profiles excluding the interfacial re-
gions of about 4σ . As usual, the slip length was computed
by linear extrapolation of the velocity profiles to the values
Vx = 0 below the lower wall and Vx = U above the upper
wall and then averaged.

Figure 7 shows the ensemble-averaged temperature pro-
files for selected values of the upper wall speed and
kθ = 0.0ε and 3.0ε. The local fluid temperature inside the
averaging bins was computed from the velocity component in
the ẑ direction (perpendicular to the walls). As observed in
Fig. 7, at small values of the upper wall speed, the fluid tem-
perature is uniform throughout the channel and it remains
equal to the temperature imposed by the Langevin thermo-
stat. With increasing upper wall velocity, the fluid heats up
and the temperature profiles become curved near the inter-
faces. When U = 4.0σ /τ in Fig. 7, the heating up is more
pronounced near the walls because the slip velocity is compa-
rable to the fluid thermal velocity. We note that it was previ-
ously shown that at high shear rates, the fluid temperature in
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FIG. 7. Temperature profiles across the channel for the indicated values of
the upper wall velocity and bending stiffness coefficients (a) kθ = 0.0ε and
(b) kθ = 3.0ε. The vertical axes denote the location of the fcc lattice planes
(at z/σ = −12.29 and 9.73) in contact with fluid molecules. The dashed lines
(at z/σ = −11.79 and 9.23) mark the position of the liquid-solid interface.

the direction perpendicular to the plane of shear is slightly
smaller than in the other directions, indicating that the ki-
netic energy in the ŷ direction, in which the Langevin thermo-
stat is applied, dissipates faster than the energy transfer from
the other directions.36 It should also be mentioned that me-
chanical and dynamical properties of two-dimensional fluids
undergoing planar Couette flow can be affected by the ther-
mostatting procedure, which is applied either directly on the
fluid molecules or only on the vibrating wall atoms.64

C. Shear viscosity and slip length

In steady shear flow, the fluid viscosity is defined by
the relation σxz = μ(γ̇ ) γ̇ , where γ̇ denotes the shear rate
and σ xz is the shear stress through any plane parallel to the
solid walls. In our simulations, the shear stress was com-
puted at the liquid-solid interface by averaging the total force
(in the shear flow direction) between the lower wall atoms
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FIG. 8. Shear rate dependence of the polymer viscosity μ (in units of ετσ−3)
for selected values of the bending stiffness coefficient. The dashed line indi-
cates a slope of −0.37. Solid curves are a guide for the eye.

and the fluid molecules. The dependence of polymer viscos-
ity on shear rate is presented in Fig. 8 for selected values
of the bending stiffness coefficient. For more flexible chains
(kθ ≤ 2.0ε), the gradual transition from the Newtonian to
shear-thinning regimes is clearly observed in the accessible
range of shear rates. The dashed line with the slope −0.37 is
shown for reference in Fig. 8, indicating shear-thinning be-
havior of flexible chains (kθ = 0.0ε and N = 20) reported
in previous studies.36, 42 The characteristic shear rate of the
transition correlates well with the inverse relaxation time of
polymer chains in the bulk region [see inset in Fig. 4(a)]. Not
surprisingly, with increasing chain stiffness, the polymer vis-
cosity at low shear rates increases, and the slope of the shear-
thinning region becomes more steep due to the orientation of
partially uncoiled chains in the shear flow. The apparent sat-
uration of the viscosity at high shear rates is due to an in-
crease in the fluid temperature near interfaces. The error bars
are larger at low shear rates due to the enhanced statistical un-
certainty in averaging velocity profiles and wall shear stress.

Figure 9 shows the dependence of slip length as a func-
tion of shear rate for the same flow conditions and values of
the bending stiffness coefficient as in Fig. 8. All curves in
Fig. 9 exhibit the same characteristic features: a pronounced
minimum at low shear rates and a steep increase at higher
shear rates. In case of flexible chains, this behavior was ana-
lyzed previously36, 39, 42 using Eq. (1). As illustrated in Fig. 9,
the slip length (for kθ = 0.0ε) is nearly constant at low shear
rates because of the extended Newtonian regime [in Fig. 8]
and velocity-independent friction coefficient. With increas-
ing shear rate, the relative competition between the shear-
thinning viscosity and the dynamic friction coefficient in
Eq. (1) leads to a minimum in the slip length, which is fol-
lowed by a rapid increase at higher shear rates. Unexpectedly,
increasing the chain stiffness produces larger slip lengths at
low shear rates but smaller Ls at high shear rates. This trend
can be understood by analyzing the effect of chain stiffness on
the friction coefficient as a function of the slip velocity (see
Subsection III D).
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kθ = 0.0ε
kθ = 1.0ε
kθ = 2.0ε
kθ = 3.0ε
kθ = 3.5ε

FIG. 9. Variation of the slip length Ls/σ as a function of shear rate for the in-
dicated values of the bending stiffness coefficient. The solid curves are drawn
to guide the eye.
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As mentioned previously, the range of the upper wall
speeds considered in the present study corresponds to anti-
symmetric velocity profiles so that the slip velocity is the
same at the lower and upper walls. It is expected that at higher
upper wall speeds, the slip velocity at one of the solid walls
will be much larger than the fluid thermal velocity producing
slip lengths much larger than the channel height.38 The inves-
tigation of the slip transition at very high shear rates is not the
main focus of this paper; and, therefore, it was not studied in
detail.

D. The dynamic friction coefficient

In this subsection, we analyze the influence of chain stiff-
ness on the friction coefficient at the liquid-solid interface as
a function of the slip velocity. The results of previous MD
studies have shown that the data for flexible polymer chains
and weakly attractive crystalline surfaces can be well fitted by
the following empirical equation:

k/k∗ = [1 + (Vs/V ∗
s )2]−0.35, (12)

where the parameter k* is the friction coefficient at small
slip velocities and V ∗

s is the characteristic slip velocity of the
transition to the nonlinear regime.36, 39, 42 It was demonstrated
numerically that the friction coefficient k* is determined by
the contact density and the in-plane structure factor of the
first fluid layer.42 Furthermore, the characteristic slip veloc-
ity V ∗

s was found to correlate well with the diffusion rate of
fluid monomers over the distance between nearest minima of
the substrate potential.42 The physical origin of the exponent
−0.35 in Eq. (12) is at present unclear.

Although the friction coefficient can be readily com-
puted from Eq. (1), the slight curvature in the velocity pro-
files near solid walls and the location of the liquid-solid inter-
faces used to compute the slip length [see Fig. 6], introduce a
small discrepancy between the definitions k(Vs) = μ/Ls and
k(V1) = σxz/V1, where Vs = Lsγ̇ and V1 is the velocity of
first fluid layer. To eliminate this uncertainty, in the present
study, the slip velocity was computed directly from the veloc-
ity profiles as follows:

V1 =
∫ z1

z0

Vx(z)ρ(z)dz

/ ∫ z1

z0

ρ(z)dz, (13)

where the limits of integration (z0 = −11.54σ and z1

= −10.87σ ) define the width of the first peak in density pro-
files, which are shown for example in Fig. 5.

The friction coefficient k(V1) as a function of the slip
velocity is plotted in Fig. 10 for several values of the bend-
ing stiffness coefficient. The important conclusion from the
present results is that, with increasing chain stiffness, the fric-
tion coefficient at small slip velocities increases, and its decay
rate at large slip velocities is independent of the chain stiff-
ness. It can be further observed that for more flexible chains,
kθ ≤ 1.0ε, the data are well described by the functional form
given by Eq. (12). However, as the chain stiffness increases,
the data in Fig. 10 indicate qualitative changes in the ve-
locity dependence of the friction coefficient, i.e., the appear-
ance of a pronounced maximum at small slip velocities. This
non-monotonic behavior is related to the enhanced ordering

0.001 0.01 0.1 1
V1 τ/σ

0.4

1

8

k
[ε

τσ
−4

]

kθ = 0.0ε

kθ = 2.0ε
kθ = 3.0ε
kθ = 3.5ε

kθ = 1.0ε

FIG. 10. Log-log plot of the friction coefficient k = σxz/V1 (in units of
ετσ−4) as a function of the slip velocity of the first fluid layer V1 (in units of
σ /τ ) for the tabulated values of the bending stiffness coefficient. The dashed
curve is the best fit to Eq. (12) with k* = 1.88ετσ−4 and V ∗

s = 0.2 σ/τ . The
solid curves are guides for the eye.

of semiflexible chains near interfaces due to their orientation
along the shear flow direction. This effect will be discussed
in more detail in Subsection III E. For the largest value of the
stiffness coefficient, kθ = 3.5ε, the error bars are relatively
large at small slip velocities because the orientation of the
extended chain segments in the first fluid layer is strongly in-
fluenced by the sixfold symmetry of the wall lattice and their
relaxation dynamics is very slow [see Fig. 4 (b)].

Nevertheless, some trends in the nonlinear rate depen-
dence of the slip length presented in Fig. 9 can be understood
from Eq. (1) and the data reported in Figs. 8 and 10. For ex-
ample, the ratio of shear viscosity to the friction coefficient is
smaller for stiffer chains with kθ = 3.5ε at high shear rates,
while the largest slip length at low shear rates is reported for
chains with kθ = 3.0ε. Also, the sharp decay of the slip length
for the cases kθ = 3.0ε and 3.5ε in Fig. 9 is related to the large
negative slope of the polymer viscosity at low shear rates. As
mentioned earlier, the nearly constant value of the slip length
at low shear rates for fully flexible chains in Fig. 9 is due to
the Newtonian viscosity and a wide linear regime of friction
determined by the parameter V ∗

s in Eq. (12).

E. Fluid structure near solid walls

The examples of the fluid density profiles shown in Fig. 5
demonstrate that the fluid density layering is most pronounced
for the fluid monomers in contact with wall atoms. It is well
known that, in addition to the fluid ordering perpendicular to
the substrate, the periodic surface potential induces structure
formation within the first fluid layer. The measure of the in-
duced order is the in-plane static structure factor, which is
defined as follows:

S(k) = 1

N

∣∣∣
N∑
j=1

ei k·rj

∣∣∣2
, (14)

where the sum is over N fluid monomers in the layer
and rj = (xj , yj ) is the position vector of the jth monomer.
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FIG. 11. The normalized structure factor at the main reciprocal lattice vector
G1 = (7.23 σ−1, 0) (a), contact density (b), and temperature (c) of the first
fluid layer as a function of the slip velocity V1 (in units of σ /τ ). The values
of the bending stiffness coefficient are kθ = 0.0ε (◦), kθ = 2.0ε (�), and
kθ = 3.0ε (�).

Depending on the strength of wall-fluid interactions and com-
mensurability of liquid and solid structures, the structure fac-
tor typically contains a set of sharp peaks at the reciprocal
lattice vectors, which are superimposed on several concentric
rings characteristic of the liquid-like short range order.9 In
the past, several MD studies have demonstrated a strong cor-
relation between the magnitude of the largest peak at the first
reciprocal lattice vector and the friction coefficient at liquid-
solid interfaces.9, 12, 14, 15, 28, 35, 36, 39, 42

We next plot the dependence of the normalized struc-
ture factor evaluated at the main reciprocal lattice vector
G1 = (7.23 σ−1, 0), the contact density, and the temperature
of the first fluid layer in Fig. 11 for three values of the bend-
ing stiffness coefficient. Similar to previous findings for flex-
ible chains,39 all three parameters in Fig. 11 remain con-
stant at small slip velocities, V1 � 0.1 σ/τ , while the induced
structure [S(G1)/S(0) and ρc] reduces and the fluid tempera-
ture increases at higher slip velocities. In sharp contrast, the
structure factor for semiflexible chains exhibits a distinctive
maximum at small slip velocities. Note that these changes
in the structure factor are not reflected in the contact den-
sity, suggesting that they are mainly caused by the reorien-
tation of chain segments in the first layer along the shear flow
direction.

In order to quantify this hypothesis, we examined the
chain structure in contact with the substrate. Figure 12 shows
the average number of consecutive monomers per chain in
the first fluid layer and their bond orientation with respect to
the shear flow direction. Specifically, we computed the aver-
age value 〈cos2θ〉, where θ is the angle between the x̂ axis
and the three-dimensional bond vector connecting two con-
secutive monomers in the first fluid layer. In this definition,
〈cos2θ〉 = 0.5 for the planar isotropic distribution, whereas
〈cos2θ〉 = 1.0 for the parallel arrangement of bond vectors
along the x̂ axis. The plots in Fig. 12 reveal that, with increas-
ing chain stiffness, the first fluid layer consists of more ex-
tended chain segments, which become preferentially aligned
in the direction of shear flow. Notice that the orientation of
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FIG. 12. The structure factor (a), number of consecutive monomers per chain
(b), and bond orientation (c) in the first fluid layer as a function of the slip
velocity. The values of the bending stiffness coefficient are kθ = 0.0ε (◦),
kθ = 2.0ε (�), and kθ = 3.0ε (�). The data for S(G1)/S(0) are the same as
in Fig. 11 (a).

flexible chain segments remain isotropic at small slip veloci-
ties, V1 � 0.1 σ/τ . Hence, the results in Figs. 11 and 12 indi-
cate that the appearance of a maximum in S(G1)/S(0), which
in turn affects the friction coefficient in Fig. 10, is due to the
shear-induced alignment of semiflexible chain segments in the
first fluid layer.

We finally summarize our data by plotting the inverse
friction coefficient as a function of the combined variable
S(0)/[S(G1) ρc] in Fig. 13. It was previously shown for flex-
ible polymer chains that in the linear regime [Vs < V ∗

s in
Eq. (12)], the friction coefficient can be described by a func-
tion of the variable S(0)/[S(G1) ρc] for a number of mate-
rial parameters of the interface, such as fluid and wall den-
sities, surface energy, chain length, and wall lattice type.42

The best fit to the MD data taken from Ref. 42 is indicated
by the dashed line in Fig. 13. It can be observed that, for all
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FIG. 13. Log-log plot of the inverse friction coefficient k−1 = V1/σxz (in
units of σ 4/ετ ) as a function of S(0)/ [S(G1) ρc σ 3] computed in the first
fluid layer. The values of the bending stiffness coefficient are tabulated in the
inset. The dashed line y = 0.041 x1.13 is taken from Ref. 42 and it is shown
for reference.



224702-9 Nikolai V. Priezjev J. Chem. Phys. 136, 224702 (2012)

values of the bending stiffness coefficient, the data points are
distributed around the straight dashed line. In agreement with
the previous results,42 at small slip velocities, the friction co-
efficient for more flexible chains, kθ ≤ 2.0ε, is well described
by the master curve. The most noticeable difference between
flexible and semiflexible chains in Fig. 13 is the appearance
of the hook-shaped curvature at small slip velocities, which is
related to the local maximum in the structure factor discussed
earlier. In other words, the same value of the product of struc-
ture factor and contact density, S(0)/[S(G1) ρc], corresponds
to two different values of the friction coefficient, depending
on the slip velocity and chain stiffness.

In summary, the results in Fig. 13 for semiflexible chains,
kθ ≤ 2.0ε, confirm previous findings that the friction coeffi-
cient at small slip velocities is determined by the magnitude of
the surface-induced peak in the structure factor and the con-
tact density of the first fluid layer.42 The deviation from the
master curve for more rigid chains, kθ > 2.0ε, might be re-
lated to the slower relaxation dynamics of the chains in the
interfacial region, similar to the trends found in dense poly-
mer films at low shear rates.39 Finally, the collapse of the data
for S(0)/[S(G1) ρc] � 10 in Fig. 13 might be related to the
fact that the friction coefficient is independent of the chain
stiffness at large slip velocities (see Fig. 10).

IV. CONCLUSIONS

In this paper, we have presented results from extensive
molecular dynamics simulations of thin polymer films con-
fined by crystalline walls with weak surface energy. The com-
putations were based on a coarse-grained bead-spring model
of linear polymer chains with an additional bond angle po-
tential that controls chain bending stiffness. The spatial con-
figuration and local relaxation dynamics of polymer chains
were characterized by the radius of gyration and the decay
rate of the autocorrelation function of the first normal mode.
We found that semiflexible chains near solid walls become
more uncoiled and their relaxation dynamics is significantly
slowed down.

The most interesting result of the present study is the ap-
pearance of a distinct maximum in the velocity dependence of
the friction coefficient due to the shear-induced alignment of
semiflexible chain segments in the first fluid layer near solid
walls. At small slip velocities, the orientation of more ex-
tended chain segments along the flow direction produces an
enhanced ordering within the first fluid layer measured by the
height of the main peak in the structure factor. This effect is
absent for fully flexible chains since their segment orienta-
tion in the adjacent layer remains isotropic at small slip ve-
locities. In addition, it was demonstrated that, with increasing
slip velocity, the friction coefficient decreases and becomes
independent of the chain stiffness.

Our simulation results indicate that the main features in
the shear rate dependence of the slip length include a nearly
constant value at low shear rates, a pronounced minimum at
intermediate rates, and a rapid increase at high shear rates.
These slip flow regimes are determined by the ratio of the
shear-rate-dependent polymer viscosity and the dynamic fric-
tion coefficient. Overall, we conclude that it is difficult to pre-

dict the net effect of chain stiffness on the slip length with-
out performing numerical simulations; especially at low shear
rates, where both polymer viscosity and friction coefficient in-
crease with increasing bending rigidity.

ACKNOWLEDGMENTS

Financial support from the National Science Foundation
(CBET-1033662) is gratefully acknowledged. Computational
work in support of this research was performed at Michigan
State University’s High Performance Computing Facility.

1M. M. Denn, Annu. Rev. Fluid Mech. 33, 265 (2001).
2E. C. Achilleos, G. Georgiou, and S. G. Hatzikiriakos, J. Vinyl Addit.
Technol. 8, 7 (2002).

3M. Ruths and J. N. Israelachvili, “Surface forces and nanorheology of
molecularly thin films,” in Springer Handbook of Nanotechnology, 3rd ed.,
edited by B. Bhushan (Springer, Berlin, 2010).

4O. Baumchen and K. Jacobs, J. Phys.: Condens. Matter 22, 033102 (2010).
5S. Q. Wang, Adv. Polym. Sci. 138, 227 (1999).
6A. Maali and B. Bhushan, J. Phys.: Condens. Matter 20, 315201 (2008).
7U. Heinbuch and J. Fischer, Phys. Rev. A 40, 1144 (1989).
8J. Koplik, J. R. Banavar, and J. F. Willemsen, Phys. Fluids A 1, 781
(1989).

9P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830 (1990).
10P. A. Thompson and S. M. Troian, Nature (London) 389, 360 (1997).
11J.-L. Barrat and L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).
12J.-L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).
13T. M. Galea and P. Attard, Langmuir 20, 3477 (2004).
14N. V. Priezjev, Phys. Rev. E 75, 051605 (2007).
15N. V. Priezjev, J. Chem. Phys. 127, 144708 (2007).
16A. E. Kobryn and A. Kovalenko, J. Chem. Phys. 129, 134701 (2008).
17C. Liu and Z. Li, Phys. Rev. E 80, 036302 (2009).
18X. Yong and L. T. Zhang, Phys. Rev. E 82, 056313 (2010).
19N. Asproulis and D. Drikakis, Phys. Rev. E 81, 061503 (2010).
20A. Niavarani and N. V. Priezjev, Phys. Rev. E 81, 011606 (2010).
21N. Asproulis and D. Drikakis, Phys. Rev. E 84, 031504 (2011).
22A. A. Pahlavan and J. B. Freund, Phys. Rev. E 83, 021602 (2011).
23F.-C. Wang and Y.-P. Zhao, Soft Matter 7, 8628 (2011).
24S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, J. Chem. Phys.

135, 144701 (2011).
25N. V. Priezjev, J. Chem. Phys. 135, 204704 (2011).
26S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, J. Chem. Phys.

136, 024705 (2012).
27P. Padilla and S. Toxvaerd, J. Chem. Phys. 101, 1490 (1994).
28P. A. Thompson, M. O. Robbins, and G. S. Grest, Isr. J. Chem. 35, 93

(1995).
29E. Manias, G. Hadziioannou, and G. ten Brinke, Langmuir 12, 4587

(1996).
30R. Khare, J. J. de Pablo, and A. Yethiraj, Macromolecules 29, 7910

(1996).
31M. J. Stevens, M. Mondello, G. S. Grest, S. T. Cui, H. D. Cochran, and

P. T. Cummings, J. Chem. Phys. 106, 7303 (1997).
32A. Koike and M. Yoneya, J. Phys. Chem. B 102, 3669 (1998).
33A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, J. Chem. Phys. 110, 2612

(1999).
34A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, Tribol. Int. 35, 35 (2002).
35N. V. Priezjev and S. M. Troian, Phys. Rev. Lett. 92, 018302 (2004).
36A. Niavarani and N. V. Priezjev, Phys. Rev. E 77, 041606 (2008).
37J. Servantie and M. Muller, Phys. Rev. Lett. 101, 026101 (2008).
38A. Martini, H. Y. Hsu, N. A. Patankar, and S. Lichter, Phys. Rev. Lett. 100,

206001 (2008).
39N. V. Priezjev, Phys. Rev. E 80, 031608 (2009).
40S. Dhondi, G. G. Pereira, and S. C. Hendy, Phys. Rev. E 80, 036309 (2009).
41L.-T. Kong, C. Denniston, and M. H. Muser, Modell. Simul. Mater. Sci.

Eng. 18, 034004 (2010).
42N. V. Priezjev, Phys. Rev. E 82, 051603 (2010).
43A. Vadakkepatt, Y. Dong, S. Lichter, and A. Martini, Phys. Rev. E 84,

066311 (2011).
44M. R. Farrow, A. Chremos, P. J. Camp, S. G. Harris, and R. F. Watts, Tribol.

Lett. 42, 325 (2011).



224702-10 Nikolai V. Priezjev J. Chem. Phys. 136, 224702 (2012)

45D. Savio, N. Fillot, P. Vergne, and M. Zaccheddu, Tribol. Lett. 46, 11
(2012).

46P. G. de Gennes, Soft Interfaces, The 1994 Dirac Memorial Lecture
(Cambridge University Press, 1997).

47W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst,
and B. Moran, Phys. Rev. A 22, 1690 (1980).

48G. Marechal, J-P. Ryckaert, and A. Bellemans, Mol. Phys. 61, 33 (1987).
49J. Servantie and M. Muller, J. Chem. Phys. 128, 014709 (2008).
50R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of

Polymeric Liquids, 2nd ed. (Wiley, New York, 1987).
51K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
52R. Auhl, R. Everaers, G. S. Grest, K. Kremer, and S. J. Plimpton, J. Chem.

Phys. 119, 12718 (2003).
53G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).
54N. V. Priezjev and S. M. Troian, J. Fluid Mech. 554, 25 (2006).

55N. V. Priezjev, A. A. Darhuber, and S. M. Troian, Phys. Rev. E 71, 041608
(2005).

56M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Clarendon, Oxford, 1987).

57I. Bitsanis and G. Hadziioannou, J. Chem. Phys. 92, 3827 (1990).
58T. Aoyagi, J. Takimoto, and M. Doi, J. Chem. Phys. 115, 552 (2001).
59A. Niavarani and N. V. Priezjev, J. Chem. Phys. 129, 144902 (2008).
60I. A. Bitsanis and C. Pan, J. Chem. Phys. 99, 5520 (1993).
61E. Manias, “Nanorheology of strongly confined molecular fluids,” Ph.D.

dissertation, (University of Groningen, 1995).
62K. Binder, Monte Carlo and Molecular Dynamics Simulations in Polymer

Science (Oxford University Press, 1995).
63M. Bulacua and E. van der Giessen, J. Chem. Phys. 123, 114901 (2005).
64S. Bernardi, B. D. Todd, and D. J. Searles, J. Chem. Phys. 132, 244706

(2010).


