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The flow of viscous incompressible fluid over a periodically corrugated surface is investigated
numerically by solving the Navier–Stokes equation with the local slip and no-slip boundary
conditions. We consider the effective slip length which is defined with respect to the level of the
mean height of the surface roughness. With increasing corrugation amplitude the effective no-slip
boundary plane is shifted toward the bulk of the fluid, which implies a negative effective slip length.
The analysis of the wall shear stress indicates that a flow circulation is developed in the grooves of
the rough surface provided that the local boundary condition is no-slip. By applying a local slip
boundary condition, the center of the vortex is displaced toward the bottom of the grooves and the
effective slip length increases. When the intrinsic slip length is larger than the corrugation
amplitude, the flow streamlines near the surface are deformed to follow the boundary curvature, the
vortex vanishes, and the effective slip length saturates to a constant value. Inertial effects promote
vortex flow formation in the grooves and reduce the effective slip length. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3121305�

I. INTRODUCTION

An accurate flow prediction in microchannels is impor-
tant for the optimal design and fabrication of microfluidic
devices whose applications range from medicine to
biotechnology.1,2 The boundary conditions and the surface
topology are major factors affecting the flow pattern near the
solid boundary and the formation of recirculation zones. The
flow separation at rough surfaces can modify the wall shear
stress distribution or initiate instability towards turbulence.
In microfluidic channels, the vortex flow enhances the mix-
ing efficiency3,4 and promotes convective heat transfer.5–7 In
cardiovascular systems, the separation region at the entrance
of branching vessels may trap lipid particles which could
lead to arterial diseases.8–10 In the present study we examine
the role of slip boundary condition in determining the flow
properties near rough surfaces including the separation phe-
nomena and distribution of pressure and shear stress along
the surface.

Although the validity of the no-slip boundary condition
is well accepted at the macroscopic level, recent experi-
ments11–16 and molecular dynamics �MD� simulations17–22

reported the existence of a boundary slip in microflows. The
model first proposed by Navier relates the slip velocity to the
rate of shear via the proportionality coefficient, the so-called
slip length. The MD simulations are particularly suitable for
examining the influence of molecular parameters on the mi-
croscopic slip length at the liquid/solid interface. The advan-
tage of the MD simulations is that a detailed flow analysis
can be performed at the molecular level while the explicit
specification of the boundary conditions is not required. In
contrast to the description of the flow near boundary by
means of microscopic slip length, it is convenient to charac-
terize the flow over macroscopically rough surfaces by the
effective slip length, which is defined here with respect to the

level of the mean height of the surface roughness. Recent
MD studies have demonstrated that the effective slip length
in a flow of simple fluids23 and polymer melts24 over a wavy
surface agrees well with hydrodynamic predictions25,26 when
the corrugation wavelength is larger than approximately 30
molecular diameters.

The influence of surface roughness on fluid flow with
either local no-slip or zero shear stress �i.e., perfect slip�
boundary conditions has been extensively studied in the past
decades,27–33 see also a review section in Ref. 23. Analytical
calculations have shown that in a shear flow over a corru-
gated surface with microscopic no-slip or zero shear stress
conditions, the effective boundary slip is insignificant
macroscopically.27,29 The effective no-slip boundary plane is
located at an intermediate position between crests and val-
leys of the rough surface when the no-slip condition is im-
posed along the solid boundary.16,28,31,34,35 For an arbitrary
surface roughness with small amplitudes, the slip coefficient
in the Navier model is proportional to the average amplitude
of the wall roughness and depends on the position of the
origin of the coordinate system.30 Applying the no-slip
boundary condition along the wavy surface, Tuck and
Kouzoubov31 demonstrated that the effective slip length is
inversely proportional to the corrugation wavelength and
quadratically proportional to the amplitude of the surface
roughness. However, the series expansion method used in31

fails at large wavenumbers, ka�0.5, when a backflow ap-
pears inside the grooves of the substrate. The effective slip
length for a flow above the surface with deep corrugations
only weakly depends on the depth of the grooves.24,28,33 De-
spite considerable analytical efforts, the relation between the
vortex flow structure in deep grooves and the effective slip
length has not yet been systematically investigated.

The laminar flow separation at the corrugated surface
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with the local no-slip boundary conditions depends on the
depth of the grooves and the Reynolds number.36–43 In a
creeping flow over a sinusoidal surface, the flow circulation
appears in sufficiently deep grooves and, as the corrugation
amplitude increases, the vortex grows and remains
symmetric.41,44,45 With increasing Reynolds number, the vor-
tex flow forms even in shallow grooves, the circulation re-
gion expands, and the center of vorticity is displaced
upstream.36,39,40,42 In the limit of small-scale surface rough-
ness and for no-slip boundary conditions, the apparent slip
velocity at the mean surface becomes more negative as the
Reynolds number increases.31 A noticeable change in the ef-
fective slip length was also observed at Re�100 for laminar
flow over deep grooves when the local slip length is compa-
rable to the corrugation amplitude.24 However, the influence
of the local slip condition at the curved boundary on the
vortex flow formation has not been considered at finite Rey-
nolds numbers.

This paper is focused on investigation of the effects of
local slip boundary conditions and the Reynolds number on
the flow structure near periodically corrugated surfaces and
the effective slip length. We will show that for the Stokes
flow with the local no-slip boundary condition, the effective
slip length decreases with increasing corrugation amplitude
and a flow circulation is developed in sufficiently deep
grooves. In the presence of the local slip boundary condition
along the rough surface, the effective slip length increases
and the size of the vortex is reduced but its structure remains
symmetrical. The analysis of numerical solution of the
Navier–Stokes �NS� equation with the local slip condition
shows that the inertial effects promote the asymmetric vortex
flow formation and reduce the effective slip length.

This paper is organized as follows. The details of a con-
tinuum model and the implementation of the local slip
boundary conditions are described in Sec. II. The analytical
results for the Stokes flow over a wavy surface by Panzer et
al.26 are summarized in Sec. III A. The analysis of the effec-
tive slip length and the flow structure is presented in Sec.
III B for the no-slip case and in Sec. III C for a finite micro-
scopic slip. The effect of Reynolds number on the effective
slip flow over a periodically corrugated surface is studied in
Sec. III D. A brief summary is given in Sec. IV.

II. DETAILS OF NUMERICAL SIMULATIONS

The two-dimensional incompressible and steady-state
Navier–Stokes equation is solved using the finite element
method. The computational setup consists of a viscous fluid
confined between an upper flat wall and a lower sinusoidal
wall �see Fig. 1�. The corrugation wavelength of the lower
wall is set to � and is equal to the system size in the x̂
direction. The upper wall is located at h=� above the refer-
ence line at a=0, which is defined at the level of the mean
height of the surface roughness. The continuity and NS equa-
tions are as follows:

� · u = 0, �1�

��u · �u� = − �p + ��2u , �2�

where u=uî+v ĵ is the velocity vector in the Cartesian coor-
dinate system, p is the pressure field, � is the fluid density,
and � is the Newtonian viscosity.

The penalty formulation is employed to avoid decou-
pling between the pressure and velocity fields.46 In this
method, the continuity equation is replaced with a perturbed
equation

� · u = −
p

�
, �3�

where � is the penalty parameter, which ensures the incom-
pressibility condition. Thus, the modified momentum equa-
tions in the x̂ and ẑ directions are

��u · �u� = � � �� · u� + ��2u , �4�

��u · �v� = � � �� · u� + ��2v . �5�

The advantage of the penalty formulation is the elimination
of pressure and the continuity equation. The penalty param-
eter � must be large enough so that compressibility errors
are minimal. The upper bound of � is determined from the
condition that the viscous effects are not destroyed by the
machine precision.46,47 The penalty parameter � should be
chosen according to the rule

� = c max��,� Re� , �6�

where Re is the Reynolds number and the constant c is rec-
ommended to be about 107 for computations with double-
precision 64 bit words.47

The Galerkin formulation of Eqs. �4� and �5� can be
explicitly written as

z

x
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z( )u
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h

FIG. 1. �Color online� Schematic of the steady-state Couette flow over a
rough surface. The upper flat wall is moving with a constant velocity U in
the x̂ direction. The lower stationary wall is modeled as a sinusoidal wave
with amplitude a and wavelength �. The wavenumber ka=2�a /� varies in
the range 0�ka�1.26.
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where Ni is the weight function, Nj, uj, and v j are the node
shape function and the velocities in each element, ūi and v̄i

are the lagged velocities, and the right hand side �RHSx,
RHSz� terms include the boundary velocities.

In our simulation, the bilinear quadrilateral elements
�i , j=1,2 ,3 ,4� with nonorthogonal edges are transformed to
straight-sided orthogonal elements by introducing the natural
coordinates 	=	�x ,z� and 
=
�x ,z�. The shape functions Ni

in the natural coordinate system are defined as

Ni =
�1 + 	i	��1 + 
i
�

4
, i = 1, . . . ,4, �9�

where 	i and 
i are the corner points of each element �see
Fig. 2�.

In the next step, Eqs. �7� and �8� are integrated numeri-
cally using four-point Gaussian quadrature.48 The final sys-
tem of equations is constructed as follows:

���K1� + ��K2� + ��K3���u

v
� = �RHSx

RHSz
� , �10�

where the terms RHSx and RHSz contain the velocities at the
boundary nodes.

The boundary conditions must be specified at the inlet,
outlet, and upper and lower walls of the Couette cell. The
periodic boundary conditions are imposed at inlet and outlet
along the x̂ direction. A finite slip is allowed along the lower
wall while the boundary condition at the upper wall is al-

ways no-slip. In the local coordinate system �spanned by the
tangential t� and normal n� vectors�, the fluid velocity along
the lower wavy wall is computed from

ut = L0��n� · ��ut + ut/R�x�� , �11�

where ut is the tangential component of u=utt�+unn� , L0 is the
intrinsic �or microscopic� slip length at the flat surface, and
R�x� is the local radius of curvature.26 The radius of curva-
ture is positive for concave and negative for convex regions.
The Navier slip condition for a flat wall is recovered from
Eq. �11� when R�x�→�. The effective slip length Leff at the
corrugated lower wall is obtained by extrapolating the linear
part of the velocity profile �0.45�z /h�0.9� to zero velocity
with respect to the reference line a=0.

The simulation begins by setting the no-slip boundary
condition at the upper and lower walls as an initial guess.
Once Eq. �10� is solved, the fluid velocities at the lower
boundary are updated using Eq. �11�. This iteration is re-
peated until the solution is converged to a desired accuracy.
The convergence rate of the solution remains under control
by using the under-relaxation value 0.001 for the boundary
nodes. The results presented in this paper are obtained with
the grid resolution 150�150 in the x̂ and ẑ directions, re-
spectively. In order to check the accuracy of the results, sev-
eral sets of simulations were also carried out with a finer grid
180�180. The maximum relative error of the effective slip
length due to the grid size is Leff /h=0.003. The converged
solution of the NS equation satisfies the following boundary
condition:

ut = Ls�x�
�ut

�n
,

1

Ls�x�
=

1

L0
−

1

R�x�
, �12�

where Ls�x� is the local slip length in the presence of surface
curvature.26

The accuracy of the numerical solution is checked by the
normalized average error, which is defined as

error = ��
i=1

Np ui
n − ui

n+1
ui

n+1 �/Np, �13�

where Np is the total number of computational nodes, ui
n is

the velocity at the node i and time step n, and ui
n+1 is the

velocity in the next time step. The typical value of the error
in the converged solution is less than 10−9. Throughout the
study, the results are presented in the non-dimensional form.
The length scale, shear rate, shear stress, and velocity are
normalized by h, ̇�, �w

� , and U�, respectively, where ̇� is the
shear rate in the case of no-slip boundary condition at the flat
upper and lower walls, and �w

� =�̇� and U�=ḣ�.

III. RESULTS

A. Analytical solution of the Stokes equation
for viscous flow over a wavy wall

The effect of small periodic surface roughness on the
effective slip length has been previously investigated for
pressure-driven flows in a channel.25,26 The analytical solu-
tion of the Stokes equation with boundary conditions Eq.
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FIG. 2. Diagram of a bilinear element in �a� the physical coordinate system
�x ,z� and �b� a transformed element in the natural coordinate system �	 ,
�.
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�12� at the wavy wall with amplitude a and wavelength �
was obtained for two limiting cases and small ka. For L0 /�
�1 the effective slip length is given by

lim
kL0→0

Leff = L0 − ka2���ka� , �14�

while in the limit of L0 /��1 it reduces to

lim
kL0→�

Leff = 	 1

L0
+

k3a2

���ka�

−1

, �15�

where the functions ���ka� and ���ka� are defined as

���ka� =
1 − 1/4�ka�2 + 19/64�ka�4 + O��ka�6�

1 + �ka�2 − 1/2�ka�4 + O��ka�6�
, �16�

and

���ka� =
1 − 5/4�ka�2 + 61/64�ka�4 + O��ka�6�

1 + �ka�2 − 1/2�ka�4 + O��ka�6�
. �17�

An approximate analytical expression for the effective slip
length that interpolates between the two bounds Eq. �14� and
Eq. �15� is given by

Leff =
L0���ka� − ka2�0�ka�/�1 + 2kL0�

1 + k3a2L0
, �18�

with the range of applicability ka�0.5. For larger wavenum-
bers ka�0.5, the function ���ka� overestimates the numeri-
cal solution and the interpolated formula Eq. �18� does not
apply.26

B. Flow over a rough surface with the local
no-slip boundary condition

In this section, the Stokes equation with the local no-slip
condition at the upper and lower walls is solved numerically
to study the effect of corrugation amplitude on the effective
slip length. The velocity profiles, averaged over the period of
corrugation �, are plotted in the inset of Fig. 3 for several
values of wavenumber ka=2�a /�. As ka increases, the nor-
malized velocity profiles remain linear in the bulk region and
become curved near the lower corrugated wall. The linear
part of the velocity profiles is used to compute the effective
slip length, which is plotted as a function of wavenumber in
Fig. 3. With increasing corrugation amplitude of the lower
wall, the effective slip length decays monotonically and be-
comes negative, indicating that the effective no-slip bound-
ary is shifted into the fluid domain. For ka�1, the numerical
results agree well with the analytical solution Eq. �18� de-
noted by the solid line in Fig. 3. The deviation from the
analytical solution becomes significant at larger wavenum-
bers where the streamlines extracted from the Stokes solu-
tion indicate the presence of backflow at the bottom of the
valley.

In order to investigate the flow behavior above the sinu-
soidal surface, the shear stress and pressure along the lower
wall were computed from the solution of the Stokes equa-
tion. In the presence of surface curvature the wall shear
stress �w has two components

�w = ��	 �ut

�n
+ ut/R�x�
�

w

, �19�

where �ut /�n is the normal derivative of the tangential ve-
locity ut, and R�x� is the local radius of curvature. In the case
of no-slip boundary condition �ut=0�, the local shear stress at
the wall is reduced to �w=���ut /�n�. The normalized shear
stress along the lower corrugated wall is plotted in Fig. 4 for
different corrugation amplitudes. The maximum value of the
shear stress is located at the crest of the surface corrugation
�x /�=0.25� and it increases with increasing amplitude,
which is consistent with the results of previous analytical
studies of a laminar flow over a wavy wall.37,49 The fluid
tangential velocity near the boundary is proportional to the
wall shear stress shown in Fig. 4. Therefore, the tangential
velocity is also maximum above the wave crest and, as the
flow moves downstream, it decelerates and the velocity be-
comes zero inside the valley at sufficiently large amplitudes.
For ka�0.79, the shear stress profiles intersect the dashed
line ��w=0� at two points and a clockwise flow circulation is
developed inside the valley. As the corrugation amplitude
increases, the intersection points move away from each other
and the flow recirculation region becomes larger. These re-
sults are in agreement with previous estimates of the critical
wavenumber ka�0.77 for the onset of flow separation in
sufficiently thick films.44,45

The pressure along the lower wavy wall is plotted in Fig.
5 for the same amplitudes as in Fig. 4. The value P� used for
normalization is the maximum pressure, which is located
above the wavy surface with ka=1.12 on the left side of the
peak. For each wavenumber, the pressure along the surface is
maximum on the left side of the peak, where the surface
faces the mainstream flow. The surface pressure reaches its
minimum value on the right side of the peak �see Fig. 5�. As
the flow moves further downstream into the valley, it en-
counters an adverse pressure gradient, which becomes larger
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FIG. 3. �Color online� The effective slip length as a function of wavenum-
ber ka computed from the solution of the Stokes equation with the no-slip
boundary condition. The primary vortex is formed at the bottom of the
valley for ka�0.79 �see the vertical arrow at ka=0.79�. The solid line is
calculated using Eq. �18�. The inset shows the normalized velocity profiles
obtained from the Stokes solution for the selected values of ka. The dashed
line located at a=0 is the reference for computing the effective slip length.
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as ka increases. At large wavenumbers ka�0.83, the flow
near the surface cannot overcome the combined resistance of
the viscous forces and the adverse pressure gradient, and it
separates from the surface at the point where �w=0.

The pressure contours and streamlines near the corru-
gated surface with wavenumber ka=1.12 are depicted in Fig.

6�a�. The pressure contours indicate the presence of an ad-
verse pressure gradient in the region 0.3�x /��0.6 on the
right side of the peak �see also Fig. 5�. The streamlines illus-
trate the flow separation inside the valley at x /��0.52. After
the separation point the flow near the wall reverses direction
and moves against the mainstream. The local velocity profile
inside the valley is shown in the inset of Fig. 6�a�. As the
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FIG. 4. �Color online� Shear stress along the lower wavy wall computed
from the Stokes solution with no-slip boundary condition �L0=0� for the
indicated values of wavenumber ka. The value �w

� used for normalization is
the shear stress at the flat wall. The intersection of the curves with the
dashed line determines the location of the flow separation and attachment
inside the valley.
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flow cross section decreases toward the peak, the flow at-
taches to the surface at the point where the shear stress is
zero again. Note also that for ka�0.83 in Fig. 5, the pressure
profiles along the lower surface exhibit a slight drop inside
the valley where the vortex is present. After the attachment
point, due to the periodic boundary condition in the x̂ direc-
tion, the pressure increases up to its maximum value, which
is located on the left side of the peak. The nonlinearity due to
inertia is absent in the Stokes flow and the vortex in the
valley remains symmetrical.

We also comment that a secondary vortex is formed in-
side a deeper valley �ka�2.33�, which is counter-rotating
with respect to the primary vortex �not shown�. Previous
analytical study of a creeping flow over a wavy wall demon-
strated that a secondary vortex appears at ka�2.28 when the
channel width is larger than the corrugation wavelength.45 In
the limiting case, when the cavity consists of two parallel
walls, an infinite sequence of counter-rotating vortices ap-
pears between the walls.50,51

C. Effect of the local slip on the flow pattern
near the rough surface

Next, we present the results of the numerical solution of
the Stokes equation with the local slip condition at the lower
wavy wall while the boundary condition at the upper flat
wall remains no-slip. The pressure contours and the stream-
lines are plotted in Fig. 6 for several values of the intrinsic
slip length L0 and the wavenumber ka=1.12. The streamline
patterns indicate that with increasing slip length L0, the size
of vortex inside the valley is progressively reduced and the
vortex eventually disappears. Similar to the analysis in Sec.
III B, the pressure and shear stress along the lower wall are
computed in the presence of the local boundary slip.

The normalized pressure along the lower wavy wall is
plotted in Fig. 7 as a function of the slip length L0. Similar to
the case of no-slip boundary condition, the profiles exhibit a
maximum and a minimum in pressure on the left and right

sides on the peak, respectively. In a wide range of L0, the
difference between the locations and the magnitudes of the
extrema is barely noticeable. As the flow moves down the
slope �0.3�x /��0.5 region in Fig. 7�, the pressure gradient
along the surface becomes positive and its magnitude de-
creases with increasing values of L0. The separation and at-
tachment points are located at the intersection of the shear
stress profiles with the horizontal line ��w=0� shown in Fig.
8. In comparison to the no-slip case, the smaller combined
effect of the adverse pressure gradient and the wall shear
stress causes a shift of the separation point deeper into the
valley �e.g., see Fig. 6�. As the slip length L0 increases, the
separation and attachment points move closer to each other,
the vortex becomes smaller and eventually vanishes. We also
note that at the separation point both components of the
shear stress �ut /�n and ut /R�x� become zero in agreement
with the Moore–Rott–Sears �MRS� criterion for the flow
separation of the boundary layer at a moving substrate.52

The influence of the local slip on the shape of the veloc-
ity profile and the normal derivative of the tangential veloc-
ity at the bottom of the valley is illustrated in the insets of
Fig. 6. The local slip length Ls�x� in Eq. �12� is a function of
the radius of curvature R�x� and the intrinsic slip length L0.
For all cases considered in Fig. 6, the condition L0� R�x�
holds and the local slip length Ls remains positive every-
where along the lower wall, which means that the slip veloc-
ity ut and the normal derivative �ut /�n carry the same sign. It
is expected, however, that for the opposite condition, L0

� R�x�, the values ut and �ut /�n would have different signs
at the bottom of the valley, and the corresponding velocity
profile will be qualitatively similar to the profile shown in
the inset of Fig. 6�d� but shifted by a negative slip velocity
�see Sec. III D�.

The effective slip length computed from the numerical
solution of the Stokes equation and Eq. �18� is plotted in Fig.
9 as a function of the intrinsic slip length L0 for wavenum-
bers ka=0.28 �a /h=0.04� and ka=1.12 �a /h=0.18�. For
small values of L0, the effective slip length approaches a
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negative value previously reported in Fig. 3 for the no-slip
case. As L0 increases, Leff grows monotonically and appears
to saturate to a constant value. The transition of the effective
slip length from a growing function of L0 to a nearly constant
value occurs at larger L0 when ka decreases. For the small
wavenumber ka=0.28, the effective slip length computed
from Eq. �18� is in good agreement with the numerical solu-
tion of the Stokes equation. Visual inspection of the stream-
line patterns indicates that there is no backflow at any L0. In
the saturation regime, L0→�, the wall shear stress becomes
zero everywhere along the lower boundary, the streamlines
near the lower wall follow the boundary curvature, and the
effective slip length in Eq. �15� approaches Leff /�
�1 / �2��ka�2�−9 /8�. For the large wavenumber ka=1.12,
the analytical results Eq. �18� overestimate Leff computed
from the numerical solution at L0 /h�0.02 and the flow cir-
culation is developed in the valley at L0 /h�0.067. The vor-
tex vanishes at the bottom of the valley at sufficiently large
values of L0 �denoted by the vertical arrow in Fig. 9�, and the
flow streamlines are deformed to follow the boundary curva-
ture �e.g., see Fig. 6�d��. The results for the intrinsic slip
length, which determines the threshold for the onset of the
flow circulation at the bottom of the valley, are summarized
in Fig. 10. For the wavenumbers examined in this study,
ka�1.26, the numerical simulations indicate that if the flow
circulation is present in the valley then the effective slip
length is negative and Leff increases with decreasing vortex
size.

D. Effect of the Reynolds number
on the effective slip length

The analysis of the Stokes equation discussed in Sec.
III C demonstrated that increasingly large local slip at the
lower wavy wall eliminates the flow circulation in the valley
and leads to a larger effective slip. In this section, the influ-
ence of the inertia term in the NS equation on the flow pat-
tern and the effective slip length is investigated. For the

shear flow with the local slip condition at the lower corru-
gated wall, the Reynolds number is defined as

Re =
�U�h�1 + Leff/h�

�
, �20�

where � is the fluid density, U� is the upper wall velocity, and
h�1+Leff /h� is the distance between the upper flat wall and
the effective no-slip boundary plane. In the case of no-slip
boundary condition at the lower flat wall, Leff is zero and the
standard definition of the Reynolds number is recovered, i.e.,
Re=�U�h /�.

The pressure and shear stress along the lower wavy wall
are plotted in Fig. 11 for the selected values of the Reynolds
number and no-slip boundary conditions. As Re increases,
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the adverse pressure gradient along the right side of the cor-
rugation peak �0.3�x /��0.5� becomes larger and the pres-
sure drop inside the valley �0.5�x /��0.9� increases. For
each value of the Reynolds number in Fig. 11�b�, similar to
the Stokes flow case, the shear stress above the peak is maxi-
mum and, as the flow moves downstream along the right side
of the peak, it decelerates and eventually separates from the
surface when �w=0. With increasing upper wall velocity, the
shear stress above the peak increases and causes the flow to
decelerate faster along the right side of the peak. The sepa-
ration and attachment points �determined from the condition
�w=0� move further apart from each other and the circulation
region inside the valley expands �see Fig. 11�b��.

The effect of the inertia term in the NS equation on the
shape of the wall shear stress and pressure profiles can be
seen in Fig. 11. The average adverse pressure gradient on the
left side of the peak is larger than its value on the right side
of the peak �0.3�x /��0.5�. Also, the shear stress profiles
above the peak �0.1�x /��0.4� are not symmetric with re-
spect to the wave crest at x /�=0.25, which means that the
flow decelerates faster on the right side of the corrugation
peak than it accelerates on the left side �see Fig. 11�b��. By
increasing the upper wall velocity, the separation point
moves further upstream than the attachment point down-
stream. The formation of asymmetric vortex flow at finite
Reynolds numbers is consistent with previous findings for a
flow in an undulated tube.36,39,40,42 The pressure contours and
streamlines extracted from the NS equation with the no-slip
boundary condition are plotted in Fig. 12�a� for ka=1.12 and
Re=79. The flow streamlines in the valley indicate an asym-
metric clockwise circulation, which is larger than the flow
circulation region shown in Fig. 6�a� for the Stokes case.

In the presence of the local slip condition along the
lower corrugated wall, the size of the vortex becomes smaller
while the flow structure remains asymmetric �see Fig. 12�.
The decrease in the vortex size is similar to the case of the
Stokes flow shown in Fig. 6 and can also be described in
terms of the pressure and shear stress along the lower wall.
In Fig. 13 the pressure and shear stress profiles are plotted
for the same values of the upper wall velocity as in Fig. 11
but with the slip boundary condition �L0 /h=0.25� along the
lower wall. Note that the Reynolds numbers in Fig. 13 are
slightly larger than the values reported in Fig. 11 for the

same U� because of the larger effective slip length entering
the definition of the Reynolds number �see Eq. �20��. For
each value of the upper wall velocity, the adverse pressure
gradient and the wall shear stress on the right side of the
peak are smaller than in the case of the no-slip boundary
condition, and, as a result, the vortex either becomes smaller
or vanishes �see Figs. 11 and 13�. As the Reynolds number
increases, however, the vortex forms and expands asym-
metrically to fill the bottom of the valley. The inset of the
Fig. 12�b� demonstrates that the slip velocity at the bottom of
the valley is negative while its normal derivative �ut /�n is
positive, in contrast to the velocity profiles shown in Fig. 6
for the same ka=1.12 and smaller slip lengths L0 /h�0.08.

The effective slip length is plotted in Fig. 14 as a func-
tion of the Reynolds number for the selected values of the
intrinsic slip length L0 and ka=1.12. With increasing Rey-
nolds number, the flow streamlines move away from the
lower boundary and straighten out, the slope of the normal-
ized velocity profiles increases, and the effective no-slip
boundary plane is shifted into the bulk fluid domain. For
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L0 /h�0.067, the circulation is always present in the valley
and the flow streamlines in the bulk of the fluid do not pen-
etrate deep into the valley �e.g., see Fig. 12�a��. For larger
slip lengths L0 /h�0.067, the flow streamlines show that
there is no backflow at low Re, and the vortex is formed at
the bottom of the valley only at sufficiently large Reynolds
numbers indicated by the dashed line in Fig. 14. The numeri-
cal results obtained from the solution of the NS equation
demonstrate that the growth or decay of the vortex as a func-
tion of the Reynolds number or the intrinsic slip length is
accompanied by the decrease or increase in the effective slip
length.

IV. CONCLUSIONS

In this paper the effects of local slip boundary condition
and the Reynolds number on the flow structure near sinusoi-
dally corrugated surfaces and the effective slip length were
investigated numerically by solving the Stokes and Navier–
Stokes equations. The effective slip length was defined with
respect to the mean height of the surface roughness by ex-
trapolating the linear part of the velocity profile averaged
over the corrugation period. In the case of Stokes flow with
the local no-slip boundary condition, the effective slip length
decreases with increasing corrugation amplitude and the vor-
tex flow develops in the groove of the rough surface for ka
�0.79. In the presence of the local slip boundary condition
along the wavy wall, the effective slip length increases and
the size of the recirculation zone is reduced. The vortex van-
ishes at sufficiently large values of the intrinsic slip length.
The analysis of the pressure and wall shear stress computed
from the Navier–Stokes equation shows that an asymmetric
vortex flow develops in the groove due to the inertia term
even when the local slip boundary condition is applied. The
effective slip length decreases with increasing Reynolds
number. The numerical simulations suggest that the variation

of the vortex size as a function of either the Reynolds num-
ber or the intrinsic slip length correlates with the magnitude
of the effective slip length.
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