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The behavior of an oil droplet pinned at the entrance of a micropore and subject to crossflow-induced
shear is investigated numerically by solving the Navier–Stokes equation. We found that in the absence of
crossflow, the critical transmembrane pressure required to force the droplet into the pore is in excellent
agreement with a theoretical prediction based on the Young–Laplace equation. With increasing shear
rate, the critical pressure of permeation increases, and at sufficiently high shear rates the oil droplet
breaks up into two segments. The results of numerical simulations indicate that droplet breakup at the
pore entrance is facilitated at lower values of the surface tension coefficient, higher oil-to-water viscosity
ratio and larger droplet size but is insensitive to the value of the contact angle. Using simple force and
torque balance arguments, an estimate for the increase in critical pressure due to crossflow and the
breakup capillary number is obtained and validated for different viscosity ratios, surface tension
coefficients, contact angles, and drop-to-pore size ratios.

Published by Elsevier B.V.
1. Introduction

Understanding the dynamics of an oil droplet at a pore entrance
is a fascinating problem at the intersection of fluid mechanics and
interface science that is of importance in such natural and
engineering processes as extraction of oil from bedrock, lubrica-
tion, aquifer smearing by non-aqueous phase liquids, and sealing of
plant leaf stomata [1–4]. Membrane-based separation of liquid–
liquid dispersions and emulsions is a salient example of a technol-
ogy where the knowledge of liquid droplet behavior in the vicinity
of a surface pore is critical for the success of practical applications.
Milk fractionation, produced water treatment, and recovery of
electrodeposition paint are examples of specific processes used in
food, petroleum, and automotive industries where porous mem-
branes are relied on to separate emulsions [5–7].

The membrane separation technique can be particularly useful
when small droplets need to be removed from liquid–liquid
dispersions or emulsions because other commonly used technol-
ogies, such as hydrocyclones and centrifugation-based systems,
are either incapable of removing droplets smaller than a certain
critical size (e.g., ∼20 μm for hydrocyclones) or are expensive and
have insufficient throughput (e.g., centrifuges). The early work by
the Wiesner group [8] as well as other studies [9,10] on oil droplet
B.V.

ev).
entry into a pore provided an estimate of the critical pressure of
permeation; however, the understanding of the entire process of
the droplet dynamics at a micropore entrance is still lacking,
especially with regard to the practically relevant case of crossflow
systems where blocking filtration laws [11] are, strictly speaking,
not applicable. Crossflow membrane microfiltration is used to
separate emulsions by shearing droplets of the dispersed phase
away from the membrane surface and letting the continuous
phase pass through [12]. In contrast to the normal, or dead-end,
mode of filtration, crossflow microfiltration allows for higher
permeate fluxes due to better fouling control [13,14]. However,
the accumulation of the dispersed phase on the surface of the
membrane and inside the pores, i.e., fouling of the membrane, can
eventually reduce efficiency of the process to an unacceptably low
level even in the presence of crossflow.

Another important application that entails interaction of liquid
droplets with porous media is membrane emulsification, where
micron-sized droplets are produced by forcing a liquid stream
through membrane pores into a channel where another liquid is
flowing [15]. The emerging droplets break when the viscous forces
exerted by crossflow above the membrane surface are larger than
surface tension forces [16]. Membrane emulsification requires less
energy and produces a more narrow droplet size distribution
[17,18] than conventional methods such as ultrasound emulsifica-
tion [19] and stirring vessels [20].

In general, the studies of petroleum emulsions have been
performed at two different scales, namely, macroscopic or bulk
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Fig. 1. Schematic representation of the oil droplet residing at the pore entrance in a
rectangular channel with the corresponding boundary conditions. The width and
length of the computational domain are fixed to 12 μm and 36 μm, respectively.
Symmetry boundary conditions are used in the ẑ direction. The system dimensions
are not drawn to scale.
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scales and mesoscopic or droplet scales [21,22]. Early research
on membrane emulsification and microfiltration involved bulk
experiments aimed at determining averaged quantities and for-
mulating empirical relations [23]. These studies considered macro-
scopic parameters such as droplet size distribution, dispersed
phase concentration, and bulk properties such as permeate flux
[24,25]. These empirical approaches were adopted due to inherent
complexity of two-phase systems produced by bulk emulsification,
where shear stresses are spatially inhomogeneous and the size
distribution of droplets is typically very broad [21,26]. However,
with the development of imaging techniques and numerical
methods, the shape of individual droplets during deformation
and breakup could be more precisely quantified for various flow
types and material properties [27,28].

First studies of the droplet dynamics date back to 1930s, when
G.I. Taylor systematically investigated the deformation and
breakup of a single droplet in a shear flow [29,30]. Since then,
many groups have examined this problem theoretically [31,32]
and in experiments [33–35]. A number of research groups have
studied experimentally how a droplet pinned at the entrance of an
unconfined pore deforms when it is exposed to a shear flow [17].
Experiments have also been performed to measure the size of a
droplet after breakup as a function of shear rate and viscosity ratio
[36,37]. Numerical simulations of the droplet deformation and
breakup have been carried out using various methods including
boundary integral [38], Lattice Boltzmann [39], and Finite Volume
[40] methods. These multiphase flow simulations generally use an
interface-capturing method to track the fluid interfaces. Among
other front-tracking methods, the Volume of Fluid method simply
defines the fluid–fluid interface through a volume fraction func-
tion, which is updated based on the velocity field obtained
through the solution of the Navier–Stokes equation [41,42]. The
Volume of Fluid method is mass-preserving, it is easily extendable
to three dimensions, and it does not require special treatment to
capture topological changes [43].

The drag force and torque on droplets or particles attached to a
solid substrate and subject to flow-induced shear stress depend on
their shape and the shear rate. Originally, O'Neill derived an exact
solution for the Stokes flow over a spherical particle on a solid
surface [44]. Later, Price computed the drag force on a hemispherical
bump on a solid surface under linear shear flow [45]. Subsequently,
Pozrikidis extended Price's work to study the case of a spherical
bump with an arbitrary angle using the boundary integral method
[46]. More recently, Sugiyama and Sbragaglia [47] varied the viscosity
ratio to include values other than infinity (the only value considered
by Price [45]) and found an exact solution for the flow over a
hemispherical droplet attached to a solid surface. Assuming that the
droplet is pinned to the surface, estimates for the drag force, torque,
and the deformation angle as functions of the viscosity ratio were
obtained analytically [47]. Also, Dimitrakopoulos showed that the
deformation and orientation of droplets attached to solid surfaces
under linear shear flow depend on the contact angle, viscosity ratio,
and contact angle hysteresis [48].

More recently, Darvishzadeh and Priezjev [49] studied numeri-
cally the entry dynamics of nonwetting oil droplets into circular
pores as a function of the transmembrane pressure and crossflow
velocity. It was demonstrated that in the presence of crossflow
above the membrane surface, the oil droplets can be either
rejected by the membrane, permeate into a pore, or break up at
the pore entrance. In particular, it was found that the critical
pressure of permeation increases monotonically with increasing
shear rate, indicating optimal operating conditions for the
enhanced microfiltration process. However, the numerical simula-
tions were performed only for one specific set of parameters,
namely, viscosity ratio, contact angle, surface tension coefficient,
and droplet-to-pore size ratio. One of the goals of the present
study is to investigate the droplet dynamics in a wide range of
material parameters and shear rates.

In this paper, we examine the influence of physicochemical
parameters such as surface tension, oil-to-water viscosity ratio,
droplet size, and contact angle on the critical pressure of permea-
tion of an oil droplet into a membrane pore. In the absence of
crossflow, our numerical simulations confirm analytical predic-
tions for the critical pressure of permeation based on the Young–
Laplace equation. We find that when the crossflow is present
above the membrane surface, the critical pressure increases, and
the droplet deforms and eventually breaks up when the shear rate
is sufficiently high. Analytical predictions for the breakup capillary
number and the increase in critical permeation pressure due to
crossflow are compared with the results of numerical simulations
based on the Volume of Fluid method.

The rest of the paper is structured as follows. In the next
section, the details of numerical simulations and a novel proce-
dure for computing the critical pressure of permeation are
described. In Section 3, the summary of analytical predictions for
the critical pressure based on the Young–Laplace equation is
presented, and the effects of confinement, viscosity ratio, surface
tension, contact angle, and droplet size on the critical transmem-
brane pressure and breakup are studied. Conclusions are provided
in the last section.
2. Details of numerical simulations

Three-dimensional numerical simulations were carried out
using the commercial software ANSYS FLUENT [50]. The FLUENT
flow solver utilizes a control volume approach, while the Volume
of Fluid (VOF) method is implemented for the interface tracking in
multiphase flows. In the VOF method, every computational cell
contains a certain amount of each phase specified by the volume
fraction. For two-phase flows, the volume fractions of 1 and
0 describe a computational cell occupied entirely by one of the
phases, while any value in between corresponds to a cell that
contains an interface between the two phases [51]. In our simula-
tions, GAMBIT was employed to generate the mesh. In order to
increase the simulation efficiency, we generated a hybrid mesh
that consists of fine hexagonal meshes in a part of the channel that
contains the droplet and coarse tetrahedral meshes in the rest of
the channel. A user-defined function was used to initialize the
droplet shape and to adjust the velocity of the top wall that
induced shear flow in the channel, as shown schematically in
Fig. 1.
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Fig. 2. Schematic of the droplet cross-sectional profile at the membrane pore. The
critical pressure of permeation ðP1�P3Þ is calculated in three steps: (1) the pressure
jump across the static interface ðP2�P3Þ is calculated from the Young–Laplace
equation, (2) the pressure jump across the dynamic interface ðP1�P2Þ is computed
numerically, and (3) the pressure jumps from steps 1 and 2 are added.
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As we recently showed, the dynamics of the oil–water interface
inside the pore slows down significantly when the transmembrane
pressure becomes close to the critical pressure of permeation [49].
Hence, the interface inside the pore is nearly static and the
pressure jump across the spherical interface is given by the
Young–Laplace equation. However, numerical simulations are
required to resolve accurately the velocity field, pressure, and
shape of the deformed droplet above the pore entrance. In the
present study, we propose a novel numerical procedure to com-
pute the critical pressure of droplet permeation and breakup, as
illustrated in Fig. 2. First, the pressure jump across the static
interface inside the pore is calculated using the Young–Laplace
equation. Second, we simulate the oil droplet in the presence of
steady shear flow when the droplet covers the pore entrance
completely and the oil phase partly fills the pore. In the computa-
tional setup, the pore exit is closed to prevent the mass flux and to
keep the droplet at the pore entrance. The difference in pressure
across the deformed oil–water interface with respect to the inlet
pressure is measured in the oil phase at the bottom of the pore
(see Fig. 2). The critical pressure of permeation is then found by
adding the pressure differences from the first and second steps.
In the previous study [49], the critical pressure of permeation at a
given shear rate was determined iteratively by testing several
transmembrane pressures close to the critical pressure. Using the
novel approach, we were able to reproduce our previous results
[49] faster and with higher accuracy. Moreover, this numerical
procedure was automated to detect the critical pressure while
increasing shear rate quasi-steadily, so that less post-processing is
required.

The solution of the Navier–Stokes equations for the flow over
the membrane surface requires specification of the appropriate
boundary conditions. As shown in Fig. 1, there are four types of
boundary conditions used in the computational domain. The
membrane surface is modeled as a no-slip boundary. A moving
“wall” boundary condition is applied at the top surface of the
channel to induce shear flow between the moving top wall and the
stationary membrane surface. The bottom of the pore is also
described by the “wall” boundary condition to prevent the mass
flux and to keep the oil droplet pinned at the pore entrance.
Periodic boundary conditions are imposed at the upstream and
downstream entries of the channel. On the lateral side of the
channel in the ðZþÞ direction, a pressure-inlet boundary condition
is applied to allow mass transfer, and to ensure that the reference
pressure is fixed. Finally, a “symmetry” condition is implemented
and only half of the computational domain is simulated to reduce
computational efforts. We performed test simulations with an
oil droplet rd ¼ 2 μm exposed to shear flow and found that
the local velocity profiles at the upstream, downstream, and the
lateral sides remained linear when the width and length of the
computational domain were fixed to 12 μm and 36 μm,
respectively. These values were used throughout the study. The
effect of confinement in the direction normal to the membrane
surface on the droplet deformation and breakup will be investi-
gated separately in Section 3.2.

The interface between two phases is described by a scalar
variable, known as the volume fraction α, which is convected by
the flow at every iteration via the solution of the transport
equation as follows:

∂α
∂t

þ ∇ � αVð Þ ¼ 0; ð1Þ

where V is the three-dimensional velocity vector. The time
dependence of the volume fraction is determined by the velocity
field near the interface. Next, since the cells containing the inter-
face include both phases, the material properties are averaged in
each cell; for instance, the volume-fraction-averaged density is
computed as follows:

ρ¼ αρ2 þ ð1�αÞρ1: ð2Þ
Using the averaged values of viscosity and density, the following
momentum equation is solved:

∂
∂t

ρVð Þ þ ∇ � ρVVð Þ ¼�∇pþ ∇ � μ ∇V þ ∇VT
� �h i

þ ρgþ F; ð3Þ

where V is the velocity vector shared between two phases, g is the
gravitational acceleration, and F is the surface tension force per
unit volume, which is given by

F¼ s
ρκ∇α

1
2 ρ1 þ ρ2
� � ; ð4Þ

where s is the surface tension coefficient and κ is the curvature of
the oil–water interface, which in turn is defined as

κ¼ 1
jnj

n
jnj � ∇

� �
n � ∇ � nð Þ

�
;

				
				



ð5Þ

where n is the vector normal to the interface. The surface tension
force given by Eq. (4) is nonzero only at the interface and it acts in
the direction normal to the interface ðn¼∇αÞ. Segments with
higher interface curvature produce larger surface tension forces
and tend to smooth out the interface [52]. The orientation of the
interface at the wall is specified by the contact angle. The unit
normal for a cell containing the interface at the wall is computed
as follows:

ni ¼ nw cos θ þ nt sin θ; ð6Þ
where nw and nt are the unit vectors normal to the wall and
normal to the contact line at the wall, respectively. The angle θ is
the static contact angle measured in the dispersed phase [41].

A SIMPLE method was utilized for the pressure–velocity
decoupling. A second order upwind scheme was used for dis-
cretization of the momentum equation and a staggered mesh with
central differencing was used for the pressure equation. Piecewise
Linear Interface Reconstruction (PLIC) algorithm was employed to
reconstruct the interface in each cell [53]. The continuum surface
force model of Brackbill et al. [41] was used to compute the surface
tension force.

An accurate computation of the pressure and velocity fields for
problems involving fluid interfaces requires a precise estimate of
the interfacial curvature. It is well known that discrete formulation
of an interface produces a loss of accuracy in regions of high
curvature and, therefore, requires a sufficiently fine mesh. The
numerical simulations were performed using the mesh size of
0:1 μm, which corresponds to 32 mesh cells along the perimeter of
the membrane pore. To ensure that the mesh resolution is
sufficiently high, we performed simulations at different shear
rates using 2 and 4 times finer meshes and found that the
resulting refinements in the final position of the droplet interface
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and the values of the critical permeation pressure were negligible.
The total volume of the oil phase inside the pore and above the
membrane surface was used to calculate the droplet radius. Unless
otherwise specified, the following parameters were used through-
out the study: the pore radius is rp ¼ 0:5 μm, the droplet radius is
rd ¼ 2 μm, the contact angle measured in oil is θ¼ 135○, and the
surface tension coefficient at the interface betweenwater and oil is
s¼ 19:1 mN=m.
3. Results

3.1. The critical pressure of permeation and the breakup capillary
number

The pressure jump across a static interface between two
immiscible fluids can be determined from the Young–Laplace
equation as a product of the interfacial tension coefficient and
the mean curvature of the interface or ΔP ¼ 2sκ. For a pore of
arbitrary cross-section, the mean curvature of the interface is
given by

κ¼ Cp cos θ

2Ap
; ð7Þ

where Cp and Ap are the cross-sectional circumference and area of
the pore, respectively [54]. Therefore, the critical pressure of
permeation of a liquid film into a pore of arbitrary cross-section
is given by

Pcr ¼
sCp cos θ

Ap
: ð8Þ

In our recent study [49], the theoretical prediction for the critical
permeation pressure, Eq. (8), was validated numerically for oil
films on a membrane surface with rectangular, elliptical, and
circular pores.

In the case of a liquid droplet blocking a membrane pore, the
critical pressure of permeation, Eq. (8), has to be adjusted to
account for the finite size of the droplet. It was previously shown
[8,9] that the critical pressure for an oil droplet of radius rd to enter
a circular pore of radius rp is given by

Pcr ¼
2s cos θ

rp
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2þ 3 cos θ� cos 3 θ

4ðrd=rpÞ3 cos 3 θ�ð2�3 sin θ þ sin 3 θÞ

s
: ð9Þ

We showed earlier that the analytical prediction for the critical
pressure given by Eq. (9) agrees well with the results of numerical
simulations for an oil droplet at the pore entrance in the absence
of crossflow [49]. In the presence of crossflow, however, Eq. (9) is
not valid as the shear flow deforms the droplet rendering its
interface above the membrane surface non-spherical [49]. Further-
more, numerical simulations have shown that the critical pressure
of permeation increases with increasing crossflow velocity up to a
certain value, above which the droplet breaks up [49]. Hence, the
phase diagram was determined for the droplet rejection, permea-
tion, and breakup depending on the transmembrane pressure and
shear rate [49]. In the present study, the critical permeation
pressure is determined more accurately and its dependence on
shear rate is studied numerically for a range of material properties
and geometrical parameters.

In the presence of crossflow above the membrane surface, an
oil droplet breaks up when viscous stresses over the droplet
surface exposed to the flow become larger than capillary stresses
at the interface of the droplet near the membrane pore. Therefore,
at the moment of breakup, the drag force in the flow direction is
balanced by the capillary force at the droplet interface around the
pore

D ≈ Fs: ð10Þ
Neglecting the contact angle dependence, Fs ∝ srp is the interfacial
force acting in the direction opposite to the flow at the droplet
interface near the pore entrance. The drag force generated by a
linear shear flow on a spherical droplet attached to a solid surface
is given by

D ∝ f DðλÞμ_γr2d; ð11Þ
where μ is the viscosity of the continuous phase, _γ is the shear rate,
and rd is the radius of the droplet [47,55]. The coefficient f DðλÞ is a
function of the viscosity ratio λ¼ μo=μw and it depends on the
shape of the droplet above the surface. Sugiyama and Sbragaglia
[47] have estimated this function analytically for a hemispherical
droplet ðθ¼ 901Þ attached to a solid surface

f D λð Þ ≈ 2þ 4:510λ
1þ 1:048λ

: ð12Þ

By plugging Eq. (11) into Eq. (10) and introducing r ¼ rd=rp, the
critical capillary number for breakup of a droplet on a pore can be
expressed as follows:

Cacr ∝
1

f DðλÞr
; ð13Þ

where the capillary number is defined as Ca¼ μw _γrd=s.
The difference in pressure inside the pore in the presence of

flow and at zero shear rate can be estimated from the torque
generated by the shear flow on the droplet surface. The torque
around the center of the droplet projected on the membrane
surface is given by

T ∝ f T ðλÞμ_γr3d: ð14Þ
It was previously shown [47] that for a hemispherical droplet on a
solid surface, f T ðλÞ is a function of the viscosity ratio

f T λð Þ ≈ 2:188λ
1þ 0:896λ

: ð15Þ

Hence, the balance of the torque due to shear flow above the
membrane surface [given by Eq. (14)] and the torque arising from
the pressure difference, ðPcr�Pcr0 ÞAprd, can be reformulated in
terms of the capillary number and drop-to-pore size ratio as
follows:

Pcr�Pcr0 ∝
f T ðλÞsrCa

rp
; ð16Þ

where Pcr0 is the critical permeation pressure in the absence of
crossflow.

In what follows, we consider the effects of confinement,
viscosity ratio, surface tension, contact angle, and droplet size on
the critical pressure of permeation and breakup using numerical
simulations and analytical predictions of Eqs. (13) and (16).

3.2. The effect of confinement on droplet deformation and breakup

In practical applications, the dimensions of a crossflow channel
of a microfiltration system are much larger than the typical size of
emulsion droplets so that the velocity profile over the distance of
about rd from the membrane surface can be approximated as
linear. To more closely simulate this condition in our computa-
tional setup, the shear flow above the membrane surface was
induced by moving the upper wall of the crossflow channel
(Fig. 1). To understand how the finite size of the channel affects
droplet dynamics at the membrane surface, we studied the
influence of the channel height on the droplet behavior. The
confinement ratio is defined as the ratio of the height of the
droplet residing on the pore at zero shear rate Hd (i.e., the height of
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Fig. 3. The cross-sectional profiles of oil droplets in steady shear flow for the
indicated confinement ratios when the capillary number is Ca¼0.021. The droplet
radius is rd ¼ 2 μm, the pore radius is rp ¼ 0:5 μm, the contact angle is θ¼ 1351, the
surface tension coefficient is s¼ 19:1 mN=m, and the viscosity ratio is λ¼ 1.
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a spherical cap above the membrane surface) to the channel
height Hch. It is important to note that the degree of confinement
is varied only in the direction normal to the membrane surface
and the computational domain is chosen to be wide enough for
the lateral confinement effects to be negligible (see Section 2).

We performed numerical simulations of an oil droplet with
radius rd ¼ 2 μm in steady-state shear flow for the channel heights
3:8 μm≤Hch ≤12:0 μm. Fig. 3 illustrates the effect of confinement
on the shape of the droplet residing on a rp ¼ 0:5 μm pore when
the capillary number is Ca¼ μw _γrd=s¼ 0:021. The height of the
droplet above the membrane surface in the absence of flow is
approximately 3:43 μm. It can be observed from Fig. 3 that highly
confined droplets become more elongated in the direction of flow
than droplets with lower confinement ratios, which is in agree-
ment with the results of previous simulations [56]. When a droplet
is highly confined, the distance between the upper moving wall
and the top of the droplet is relatively small. As a result, the
effective shear rate at the surface of the droplet is higher and the
droplet undergoes larger deformation. Furthermore, the cross-
sectional profiles for the confinement ratios of 0.428 and 0.286 are
nearly identical, indicating that the flow around the droplet is not
affected by the upper wall when Hd=Hch≲0:428 and the capillary
number is fixed.

Fig. 4 shows the variation of the critical capillary number (right
before breakup) as a function of the confinement ratio for the
same parameters as in Fig. 3. These results indicate that highly
confined droplets breakup at lower capillary numbers, and, when
the confinement ratio is smaller than about 0.5, the breakup
capillary number remains nearly constant. For the rest of the
study, the channel height was fixed to 8 μm, which corresponds to
Confinement Ratio (Hd/Hch)

C
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Fig. 4. The critical (breakup) capillary number as a function of the confinement
ratio Hd=Hch . Other parameters are the same as in Fig. 3.
the confinement ratio of 0.428 for a droplet with radius rd ¼ 2 μm.
For the results presented in Section 3.6, the channel height was
scaled appropriately to retain the same confinement ratio for
larger droplets.

3.3. The effect of viscosity ratio on the critical transmembrane
pressure

The ratio of viscosities of the dispersed and continuous phases
is an important factor that determines the magnitude of viscous
stresses at the interface between the two phases. For a small
droplet at low Reynolds numbers, the viscous stresses are primar-
ily counterbalanced by interfacial tension stresses. In a shear flow,
viscous stresses tend to distort the surface of a droplet, while
interfacial stresses assist in retaining its initial spherical shape. The
competition between the two stresses determines the breakup
criterion, deformation, and orientation of the droplet [28,57]. In
this subsection, we investigate numerically the effect of viscosity
ratio on the droplet deformation and breakup at the entrance of
the membrane pore.

Fig. 5 shows the effect of the viscosity ratio, λ¼ μo=μw, on the
critical pressure of permeation and breakup of an oil droplet on a
membrane pore as a function of the capillary number. The percent
increase in critical pressure is defined with respect to the critical
pressure in the absence of crossflow Pcr0 , i.e., ðPcr�Pcr0 Þ=Pcr0�
100%. Keeping in mind that Pcr0 does not depend on λ, the results
shown in Fig. 5 demonstrate that at a fixed Ca, the critical pressure
increases with increasing viscosity ratio, which implies that higher
viscosity droplets penetrate into the pore at higher transmem-
brane pressures. Specifically, the maximum increase in critical
pressure just before breakup is about 8% for λ¼ 1 and about 15%
for λ¼ 20. Furthermore, highly viscous droplets tend to break at
lower shear rates because of the larger torque generated by the
shear flow [see Eq. (14)]. As reported in Fig. 5, the critical capillary
number for breakup varies from about 0.018 for λ¼ 20 to 0.032 for
λ¼ 1. The practical implication of these results is that in mem-
brane emulsification processes the use of liquids with lower
viscosity ratios should be avoided as the droplets tend to break
at higher shear rates.

Examples of cross-sectional profiles of the oil droplet in steady
shear flow are presented in Fig. 6 for the viscosity ratio λ¼ 1. At
Ca
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Fig. 5. The percent increase in critical pressure of permeation as a function of the
capillary number Ca¼ μw _γ rd=s for the indicated viscosity ratios λ¼ μo=μw . Typical
error bars are shown on selected data points. For each value of λ, the data are
reported up to the critical capillary number above which droplets break into two
segments. The droplet and pore radii are rd ¼ 2 μm and rp ¼ 0:5 μm, respectively.
The contact angle is θ¼ 1351 and the surface tension coefficient is s¼ 19:1 mN=m.
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Fig. 6. The cross-sectional profiles of the oil droplet residing on the circular pore
with rp ¼ 0:5 μm for the indicated capillary numbers. The viscosity ratio is λ¼ 1.
Other parameters are the same as in Fig. 5.
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small capillary numbers, no significant deformation occurs and the
droplet retains its spherical shape above the membrane surface.
As Ca increases, a neck forms at the pore entrance while the rest of
the droplet remains nearly spherical. A closer look at the shapes of
the droplet for Ca¼0.0283 and 0.0314 in Fig. 6 reveals that with
increasing shear flow, the neck gets thinner and the droplet
becomes more elongated in the direction of flow. While the torque
due to the shear flow does not increase significantly, the elongated
shape of the droplet results in an effectively longer arm for the
torque due to pressure in the droplet along the flow direction, and,
thus, it leads to a lower critical permeation pressure required to
keep the droplet attached to the pore. This effect is observed in
Fig. 5 as the critical pressure just before breakup decreases as a
function of Ca.

We next estimate the breakup time and compare it with the
typical deformation time of the droplet interface for different
viscosity ratios. In our simulations, the upper wall velocity is
increased quasi-steadily and the spontaneous initiation of the
breakup process can be clearly detected by visual inspection of
the droplet interface near the pore entrance. We then identify the
moment when a droplet breaks into two segments and compute
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Fig. 7. The breakup time versus deformation time scale μwrdð1þ λÞ=s for the
tabulated values of the viscosity ratio λ¼ μo=μw . Other system parameters are the
same as in Fig. 5. The straight line is the best fit to the data. The error bars for the
breakup time are about the symbol size. The inset shows the droplet profiles just
before breakup for the same viscosity ratios.
the breakup time. The deformation time scale, defined by
μwrdð1þ λÞ=s, is a measure of the typical relaxation time of the
droplet interface with respect to its deformation at steady state
[48,58]. In Fig. 7, the breakup time is plotted against the deforma-
tion time scale for different viscosity ratios. Notice that the
breakup time increases linearly with the deformation time scale,
which confirms that highly viscous droplets break up more slowly.
The inset in Fig. 7 displays the droplet cross-sectional profiles just
before breakup for the same viscosity ratios. It can be observed
that the profiles nearly overlap with each other, indicating that
droplets with different viscosities are deformed identically just
before breakup.

According to Eq. (13), the breakup capillary number depends on
the viscosity ratio via the function f DðλÞ. Therefore, it is expected
that the product Cacrf DðλÞ will be independent of λ and the
appropriate dimensionless number for a constrained viscous
droplet in a shear flow is Ca f DðλÞ. Moreover, based on Eq. (16),
the percent increase in the critical pressure is independent of the
viscosity ratio when it is divided by f T ðλÞ. Fig. 8 shows the same
data as in Fig. 5 but replotted in terms of the normalized critical
pressure and the modified capillary number. As is evident from
Fig. 8, the data for different viscosity ratios nearly collapse on the
master curve. It is seen that droplets break at approximately the
same value Ca f DðλÞ≈0:09. In practice, the increase in critical
pressure due to crossflow can be roughly estimated from the
master curve in Fig. 8 for any viscosity ratio in the range 1≤λ≤20.
Also, if Ca f DðλÞ≳0:09, the oil droplets will break near the pore
entrance for any viscosity ratio.

3.4. The effect of surface tension on the critical pressure of
permeation

In this subsection, we investigate the influence of surface
tension on the critical permeation pressure, deformation and
breakup of an oil droplet residing at the pore entrance in the
presence of crossflow above the membrane surface. Fig. 9 shows
the critical pressure of permeation as a function of shear rate for
five values of the surface tension coefficient. As expected from
Eq. (9), the critical pressure at zero shear rate increases linearly
with increasing surface tension coefficient. Note that oil droplets
with higher surface tension break up at higher shear rates because
larger stresses are required to deform the interface and cause
breakup of the neck. Also, the difference between the critical
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Fig. 10. The cross-sectional profiles of the oil droplet above the circular pore for the
listed values of the surface tension coefficient. In all cases, the shear rate is
_γ ¼ 1:5� 105 s�1. Other parameters are the same as in Fig. 9.
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pressure just before breakup and Pcr0 is larger at a higher surface
tension; for example, it is about 1.5 kPa for s¼ 9:55 mN=m and
6 kPa for s¼ 38:2 mN=m. The results shown in Fig. 9 suggest that
crossflow microfiltration of emulsion droplets with higher surface
tension is more efficient because higher transmembrane pressure
can be applied and the droplet breakup is less likely.

Examples of droplet cross-sectional profiles above the mem-
brane pore are presented in Fig. 10 for five values of the surface
tension coefficient. These profiles are extracted from the data
reported in Fig. 9 at the shear rate _γ ¼ 1:5� 105 s�1. It can be
observed that oil droplets with lower surface tension become
highly deformed along the flow direction. The elongation is
especially pronounced when the surface tension coefficient is
small; for s¼ 9:55 mN=m the droplet interface is deformed locally
near the pore entrance and the neck is formed.

To further investigate the effect of surface tension on the
droplet breakup, we compare the breakup time and the deforma-
tion time scale μwrdð1þ λÞ=s. The numerical results are summar-
ized in Fig. 11 for the same values of the surface tension coefficient
as in Fig. 9. Similar to the analysis in the previous subsection, the
breakup time was estimated from the time when a droplet
becomes unstable under quasi-steady perturbation till the forma-
tion of two separate segments. It can be observed in Fig. 11 that the
breakup time varies linearly with increasing deformation time
scale, which in turn indicates that the breakup time is inversely
proportional to the surface tension coefficient. In addition, the
inset in Fig. 11 shows the cross-sectional profiles of the droplet just
before breakup for the same surface tension coefficients. Interest-
ingly, the profiles nearly coincide with each other, indicating that
the droplet shape at the moment of breakup is the same for any
surface tension.

In order to present our results in a more general form, we
replotted the data from Fig. 9 in terms of the percent increase in
critical pressure, ðPcr�Pcr0 Þ=Pcr0 � 100%, and the capillary number
in Fig. 12. Note that in all cases, the data collapse onto a master
curve and breakup occurs at the same relative pressure
ðPcr�Pcr0 Þ=Pcr0≈8% and Cacr≈0:03, which indicates that the capil-
lary number is an appropriate dimensionless number to describe
the droplet deformation in shear flow with variable surface
tension. These results are not surprising, given that the breakup
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Fig. 14. The cross-sectional profiles of the oil droplet above the circular pore for the
listed values of the contact angle when Ca¼0.022. Other parameters are the same
as in Fig. 13.
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capillary number, Eq. (13), does not depend on the surface tension
coefficient. Moreover, the increase in critical pressure due to
crossflow, Eq. (16), is proportional to s and Ca, and when it is
divided by Pcr0 , which itself is a linear function of s [see Eq. (9)],
the percent increase in critical pressure becomes proportional to
the capillary number. In practice, the master curve reported in
Fig. 12 can be used to predict the critical permeation pressure and
breakup of emulsion droplets for specific operating conditions and
surface tension.

3.5. The effect of contact angle on the droplet dynamics near the pore

Next, we focus on the effect of contact angle on the permeation
pressure, deformation and breakup of oil droplets on a membrane
pore. The variation of the critical permeation pressure as a
function of the capillary number is presented in Fig. 13 for
nonwetting oil droplets with contact angles 1151≤θ≤1551. The
critical pressure at zero shear rate is higher for oil droplets with
larger contact angles, which is in agreement with the analytical
prediction of Eq. (9). As expected, with increasing shear rate, the
critical pressure of permeation increases for all values of θ studied.
We estimate the maximum change in the critical pressure to be
about 3 kPa and roughly independent of the contact angle. This
corresponds to a relative increase of about 6% for the contact angle
θ¼ 1551 and 21% for θ¼ 1151. These results suggest that the
relative efficiency of a microfiltration system due to crossflow is
higher for emulsion droplets with lower contact angles. Interest-
ingly, we find that the critical capillary number for breakup
ðCacr≈0:032Þ is nearly independent of the contact angle. This
suggests that Ca can be used as a criterion for predicting breakup.
Finally, the examples of the droplet cross-sectional profiles are
shown in Fig. 14 for different contact angles when Ca¼0.022.
Notice that droplets with lower contact angles wet larger solid
area and are less tilted in the direction of flow.

3.6. The effect of droplet size on the critical pressure of permeation

In the microfiltration process, the size of the membrane pore is
one of the crucial parameters that determine the permeate flux
and membrane selectivity. Membranes with smaller pore sizes
provide higher rejections but require higher transmembrane
pressures to achieve the same permeate flux. In this subsection,
we examine the influence of the drop-to-pore size ratio on the
critical pressure of permeation and the breakup dynamics of oil
droplets in the presence of crossflow above the membrane surface.

Fig. 15 reports the critical permeation pressure as a function of
shear rate for the droplet radii in the range from 1:5 μm to 2:5 μm,
while the pore radius is fixed at rp ¼ 0:5 μm. In the absence of
crossflow, the critical pressure is higher for larger droplets because
they have lower curvature of the interface above the membrane
surface, which is in agreement with the analytical prediction of Eq.
(9). With increasing shear rate, the critical pressure increases for
droplets of all sizes. Note also that the slope of the curves in Fig. 15
is steeper for larger droplets because of the larger surface area
exposed to shear flow, resulting in a higher drag torque, and,
consecutively, a higher transmembrane pressure needed to bal-
ance the torque. Furthermore, as shown in Fig. 15, smaller droplets
break at higher shear rates, since higher shear stress is required to
produce sufficient deformation for the breakup to occur. The
maximum relative critical pressure is about 14% for rd=rp ¼ 3 and
6% for rd=rp ¼ 5.

We next compute the difference in the critical permeation
pressure with respect to the critical pressure in the absence of
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flow, Pcr�Pcr0 , and define r ¼ rd=rp. According to Eq. (13), the
product Cacr � r is independent of the droplet radius. At the same
time, Eq. (16) suggests that the increase in critical pressure
depends on the droplet radius via the term Ca� r . Fig. 16 shows
the critical pressure difference as a function of the modified
capillary number Ca� r for different droplet radii. It can be
observed in Fig. 16 that all curves nearly collapse on each other
and the droplet breakup occurs at the same value Ca� r≈0:125.
We also comment that one of the assumptions in deriving Eq. (16)
is that the distance between the center of the pore and the center
of the droplet on the membrane surface is approximately rd. This
approximation becomes more accurate for larger drop-to-pore size
ratios, and, thus, the critical pressure difference in Fig. 16 is nearly
the same for larger droplets even at high shear rates.

The inset of Fig. 16 shows the cross-sectional profiles of oil
droplets just before breakup for different drop-to-pore size ratios.
Note that all droplets are pinned at the pore entrance and
elongated in the direction of flow. It is seen that when r is small,
the droplet shape is significantly deformed from its original
spherical shape. In contrast, larger droplets remain nearly sphe-
rical and only deform near the pore entrance. In general, the
droplet-to-pore size ratio should be large enough to make Pcr
sufficiently high for practicable separation. At the same time, if the
pore size is much smaller than the droplet size, the water flux
through the membrane decreases and the probability of breakup
increases, which could result in lower rejection rates and internal
fouling of the membrane. Therefore, choosing a membrane with
an appropriate pore size could greatly increase the efficiency of
the microfiltration process.
4. Conclusions

In this paper, we performed numerical simulations to study the
effect of material properties on the deformation, breakup, and
critical pressure of permeation of oil droplets pinned at the
membrane pore of circular cross-section. In our numerical setup,
the oil droplet was exposed to a linear shear flow induced by the
moving upper wall. We used finite-volume numerical simulations
with the Volume of Fluid method to track the interface between
water and oil. The critical pressure of permeation was computed
using a novel procedure in which the critical permeation pressure
was found by adding pressure jumps across oil–water interfaces of
the droplet inside the pore and above the membrane surface. First,
the pressure jump across the static interface inside the pore was
calculated using the Young–Laplace equation. Then, the pressure
jump across the dynamic interface above the membrane surface
was computed numerically and added to the pressure jump inside
the pore. This method has proven to be accurate, robust, and
computationally efficient. To determine the dimensions of the
computational domain, we also studied the effect of confinement
on the droplet deformation and breakup and concluded that in
order to minimize finite size effects and computational costs, the
distance between the membrane surface and the upper wall has to
be at least twice the droplet diameter. In particular, it was
observed that highly confined droplets become significantly
deformed in a shear flow and break up more easily.

In the absence of crossflow, we found that the analytical
prediction for the critical permeation pressure derived by Nazzal
and Wiesner [8] agrees well with the results of numerical simula-
tions for different oil-to-water viscosity ratios, surface tension
coefficients, contact angles, and droplet sizes. In general, with
increasing crossflow shear rate, the critical permeation pressure
increases with respect to its zero-shear-rate value and the droplet
undergoes elongation in the flow direction followed by breakup
into two segments. The results of numerical simulations indicate
that at a fixed shear rate, the critical permeation pressure
increases as a function of the viscosity ratio, which implies that
more viscous droplets penetrate into the pore at higher trans-
membrane pressures. In agreement with a scaling relation for the
critical capillary number, we also found that droplets of higher
viscosity tend to break at lower shear rates. Furthermore, with
increasing surface tension coefficient, the maximum increase in
the critical permeation pressure due to crossflow becomes larger
and the droplet breakup occurs at higher shear rates. Interestingly,
the percent increase in critical permeation pressure as a function
of the capillary number was found to be independent of the
surface tension coefficient. Next, we showed that the breakup
capillary number and the increase in critical pressure of permea-
tion are nearly independent of the contact angle. Last, it was
demonstrated that smaller droplets penetrate into the pore at
lower pressures and break up at higher shear rates because larger
shear stresses are needed to deform the interface above the
membrane surface.

While most microfiltration membranes used in medium- to
large-scale separation applications have pores of complex mor-
phologies and a distribution of nominal sizes, results obtained for
the simple case of a pore of circular cross-section can be useful for
identifying general trends. As the model describes the interaction
of oil droplets with unblocked pores, which corresponds to the
initial stage of filtration or the stage that immediately follows
membrane cleaning, the results can be helpful in understanding
how fouling starts and in devising means to delay the onset of
fouling. With the development of new methods of manufacturing
micro-engineered membranes [59] and the rapid growth in the
diversity and scale of applications of microfluidic devices, conclu-
sions obtained in this work can be of direct practical value for
guiding membrane design and optimizing process variables.
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