Atomistic modeling of cyclic loading and heat treatment processes for tuning the mechanical properties of amorphous alloys

Nikolai V. Priezjev
Department of Mechanical and Materials Engineering
Wright State University

Movies, preprints @
http://www.wright.edu/~nikolai.priezjev/

• Brief introduction (metallic glasses, amorphous structure, mechanical properties, etc)

• Part I: Cyclic loading with alternating shear orientation ("mechanical annealing")

• Part II: Cryogenic thermal cycling and mechanical properties of metallic glasses

• Part III: Aging and rejuvenation during elastostatic loading of amorphous alloys

• Conclusions
Thermomechanical processing: Structural relaxation and rejuvenation

Metallic glasses: mechanical properties include high strength and low ductility (brittle)

Rejuvenation: increase in stored energy

Relaxation: (1) cyclic loading or “mechanical annealing”, (2) ultrastable glasses by deposition
Part I: Cyclic loading with alternating shear orientation ("mechanical annealing")

Details of molecular dynamics simulations and parameter values

Binary Lennard-Jones Kob-Andersen mixture:

\[V_{LJ}(r) = 4\varepsilon_{\alpha\beta} \left(\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right) \]

Parameters for \(\alpha\beta = A \) and \(B \) particles:

\(\varepsilon_{AA} = 1.0, \varepsilon_{AB} = 1.5, \varepsilon_{BB} = 0.5, m_A = m_B \)

\(\sigma_{AA} = 1.0, \sigma_{AB} = 0.8, \sigma_{BB} = 0.88 \)

Monomer density: \(\rho = \rho_A + \rho_B = 1.20\sigma^{-3} \)

Temperature: \(T_{LJ} = 0.01\varepsilon/k_B << T_g = 0.435\varepsilon/k_B \)

System size: \(L = 36.84\sigma, N_p = 60000 \)

Lees-Edwards periodic boundary conditions

LAMMPS, DPD thermostat, \(\Delta t_{MD} = 0.005\tau \)

Fast annealing rate: \(10^{-2}\varepsilon/k_B\tau \) (poorly annealed glass)

\[\gamma(t) = \gamma_0 \sin(\omega t) \]

Oscillation period: \(T = 2\pi/\omega = 5000\tau \)

higher energy sample
Potential energy per particle U during 1400 oscillation cycles for different γ_0

With increasing strain amplitude γ_0 (below yield strain), the system relocates to deeper energy minima (via collective rearrangements of atoms).

Priezjev, JNCS (2019)
Potential energy minima during 4 different deformation protocols for $\gamma_0 = 0.06$.

For the strain amplitude $\gamma_0 = 0.06$ (just below yield strain), each additional alternation of the shear orientation in the deformation protocol results in lower energy states.
The potential energy U during 3 deformation protocols for the indicated γ_0

For strain amplitudes γ_0 (below yield strain), each additional alternation of the shear orientation in the deformation protocol results in lower energy states.
The height of the yielding peak σ_Y increases when an additional shear orientation is introduced in the cyclic loading protocol. The shear modulus G is larger along the shear directions that were not used during cyclic deformation.

Snapshots of the strained glass after aging during 1400 T (no cyclic loading)

5% shear strain

10% shear strain

15% shear strain

20% shear strain

Nonaffine measure D^2
Snapshots of strained glass after 1400 alternating shear cycles (xz, yz, xy)

5% shear strain

10% shear strain

15% shear strain

20% shear strain

nonaffine measure D^2
Conclusions:

• Periodic shear deformation (in the “elastic” range) leads to relaxed, lower energy states ("mechanical annealing").

• For a fixed strain amplitude (below yield strain), each additional alternation of the shear orientation in the deformation protocol results in lower energy states.

• The yielding peak increases in glasses deformed at higher strain amplitudes.

• The shear modulus is larger along the shear directions that were not cyclically loaded.

Part II: The effect of cryogenic thermal cycling on potential energy states and mechanical properties of metallic glasses

Details of molecular dynamics simulations and parameter values

Binary Lennard-Jones Kob-Andersen mixture:

\[V_{LJ}(r) = 4\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right] \]

Parameters for \(\alpha, \beta = A \) and \(B \) particles:

\[\varepsilon_{AA} = 1.0, \varepsilon_{AB} = 1.5, \varepsilon_{BB} = 0.5, m_A = m_B \]

\[\sigma_{AA} = 1.0, \sigma_{AB} = 0.8, \sigma_{BB} = 0.88 \]

Temperature: \(T_{LJ} = 0.01\varepsilon/k_B < T_g = 0.35\varepsilon/k_B \)

LAMMPS: \(N_p = 60000, \) MD step \(\Delta t_{MD} = 0.005\tau \)

Initial quench rates: \(10^{-2}\varepsilon/k_B\tau \) to \(10^{-5}\varepsilon/k_B\tau \)

Pressure \(P = 0 \) and thermal period \(T = 5000\tau = 10^6 \) MD steps
Potential energy per atom during 100 thermal cycles for different max T_{LJ}

Aging at constant temperature: $T_{LJ} = 0.01 \varepsilon / k_B$

Fast initial annealing rate: $10^{-2} \varepsilon / k_B \tau$, poorly-annealed glass

Potential energy per atom during 100 thermal cycles for different max T_{LJ}

Aging at constant temperature: $T_{LJ} = 0.01 \, \varepsilon/k_B$

Maximum T_{LJ}

- $T_{LJ} = 0.4 \, \varepsilon/k_B$
- $T_{LJ} = 0.3 \, \varepsilon/k_B$
- $T_{LJ} = 0.2 \, \varepsilon/k_B$
- $T_{LJ} = 0.1 \, \varepsilon/k_B$

Slow initial annealing rate: $10^{-5} \, \varepsilon/k_B \tau$, well-annealed glass

Tensile stress vs strain after 100 cycles: effects of quench rate and max T_{LJ}

Strain rate $= 10^{-5} \, 1/\tau$

Aged glasses (black curves): Higher yield peak at slower quench rates

Highest yield peak (blue curves) at maximum $T_{LJ} = 0.30 \, \varepsilon/k_B$

Maximum T_{LJ}

- $T_{LJ} = 0.4 \, \varepsilon/k_B$
- $T_{LJ} = 0.30 \, \varepsilon/k_B$
- $T_{LJ} = 0.2 \, \varepsilon/k_B$
- $T_{LJ} = 0.1 \, \varepsilon/k_B$
- $T_{LJ} = 0.01 \, \varepsilon/k_B$

Aged glasses
The yielding peak σ_Y, elastic modulus E, and U_{min} versus maximum T_{LJ}

- Highest yield peak and elastic modulus after thermal loading with maximum $T_{LJ} = 0.30 \, \varepsilon / k_B$
- A correlation between minimum potential energy U_{min} and maximum values of σ_Y and E.

Initial quench rates:
- (color code)
 - $10^{-2} \, \varepsilon / k_B \tau$
 - $10^{-3} \, \varepsilon / k_B \tau$
 - $10^{-4} \, \varepsilon / k_B \tau$
 - $10^{-5} \, \varepsilon / k_B \tau$

Pressure $P = 0$
- $T_g = 0.35 \, \varepsilon / k_B$
Conclusions:

• MD simulations of binary 3D Lennard-Jones glasses that are initially prepared with different cooling rates and then subjected to repeated cycles of heating and cooling.

• The potential energy in rapidly annealed glasses decreases during thermal cycling, while the energy in slowly annealed glasses increases at large cycling amplitudes (T_g).

• The elastic modulus and the yielding peak (after the thermal treatment) acquire maximum values at a particular $max T_{LJ}$ which coincides with the minimum of the potential energy.

Part III: Aging and rejuvenation during elastostatic loading of amorphous alloys

Constant applied stress σ_{zz}

At what stress, temperature to load, and for how long?

Setup: Temperature profiles, annealing time, glass transition temperature

Reference state: \(P = 0 \) and \(T_{LJ} = 0.01 \ \varepsilon/k_B \)

The stress \(\sigma_{zz} \) was ramped up to a certain value during the annealing time.

Elastostatic loading: constant stress \(\sigma_{zz} \)

Pressure \(P = 0 \)

\(T_g = 0.35 \ \varepsilon/k_B \)
Variation of the potential energy vs. annealing time at different temp T_a

Constant applied stress σ_{zz} is up to ~70-80% of the yielding peak at a given temperature T_a

Aging: high $T_a < T_g = 0.35 \, \varepsilon/k_B$ and low stress σ_{zz} Rejuvenation: low T_a and high σ_{zz}
Collective nonaffine displacements vs. annealing time at $T_a = 0.1 \varepsilon/k_B$

Empty regions correspond to atoms that remained in their cages during the annealing time.

Elastostatic loading: constant applied stress: $\sigma_{zz} = 1.5 \varepsilon \sigma^{-3}$

$D^2(0, 10^5\tau) > 0.04\sigma^2$

$D^2(0, 2 \times 10^5\tau) > 0.04\sigma^2$

$D^2(0, 1.6 \times 10^6\tau) > 0.04\sigma^2$

$D^2(0, 2.4 \times 10^6\tau) > 0.04\sigma^2$
The elastic modulus E vs. annealing time t_a at different temperatures T_a.

- $T_a = 0.05 \, \epsilon / k_B$
- $T_a = 0.10 \, \epsilon / k_B$
- $T_a = 0.20 \, \epsilon / k_B$
- $T_a = 0.25 \, \epsilon / k_B$

Maximum effect of rejuvenation due to elastostatic loading: about 10% decrease in E.
Conclusions:

• Well-annealed binary glass at zero pressure is elastostatically loaded during extended time intervals (~10^8 MD steps) in a wide range of annealing temperatures.

• **Aging**: high $T_a < T_g = 0.35 \, \varepsilon / k_B$ and low stress σ_{zz}
 Rejuvenation: low T_a and high σ_{zz}

 \[T_a < 0.6 \, T_g \quad \sigma_{zz} \approx 0.8 \, \sigma_Y \]

• Maximum effect of rejuvenation due to elastostatic loading: about 10% decrease in E