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A B S T R A C T

The time evolution of the pore size distributions and mechanical properties of amorphous solids at constant
pressure are studied using molecular dynamics simulations. The porous glasses were initially prepared at con-
stant volume conditions via a rapid thermal quench from the liquid to the glassy state and allowing for si-
multaneous phase separation and material solidification. We found that at constant pressure and low tem-
perature, the porous network becomes more compact and the glassy systems relocate to progressively lower
levels of the potential energy. Although the elastic modulus and the average glass density both increase with the
waiting time, their dependence is described by the power-law function with the same exponent. Moreover, the
results of numerical simulations demonstrated that, under tensile loading at constant pressure, low-density
porous samples become significantly deformed and break up into separate domains at high strain, while dense
glasses form a nearly homogeneous solid material.

1. Introduction

Understanding the influence of pore morphology and porosity on
mechanical and physical properties of porous materials is important for
structural applications, including wear-resistant tools and biomedical
implants, as well as functional applications in catalysis and heat con-
duction [1,2]. Elucidating the mechanisms of tensile deformation and
fracture of microporous separator materials is crucial for battery design
and manufacturing [3–5]. A number of fabrication techniques including
phase separation and additive manufacturing open the possibility of
obtaining porous structures with various pore sizes, shapes and dis-
tributions [1]. Recent experimental and computational studies have
demonstrated that plastic deformation of bulk metallic glasses with a
regular array of pores is controlled by shear localization between
neighboring pores [6–8]. Moreover, detailed atomistic and continuum
simulations have shown that void defects result in shear band nuclea-
tion in metallic glasses at strain lower than in uniform samples, and the
critical strain depends on the shape and size of the defects [9,10]. It was
also found that tensile plasticity of metallic glass matrix composites can
be improved by increasing particle volume fraction, which provides the
resistance to shear band propagation [11]. Similarly, the plasticity of
metallic glasses under tensile loading can be enhanced by introducing
an array of crystalline particles or by increasing temperature [12].

However, the exact relationships between elastic modulus, tensile
strength and pore sizes, shapes and distributions have yet to be estab-
lished.

Using molecular dynamics simulations, it was recently shown that
rapid isochoric quenching of a glass-forming mixture from a high
temperature liquid state across the glass transition leads to the forma-
tion of porous glassy media [13–15]. The kinetics of phase separation
and solidification of the glass phase generally depend on the average
glass density as well as the rate and depth of thermal quench [13]. In
particular, it was demonstrated that after rapid, deep quench, the ty-
pical domain size grows as a power-law function of time with the ex-
ponent of about 0.5 and then it gradually crosses over to logarith-
mically slow growth, indicating strongly suppressed kinetics of phase
ordering [13]. In the previous study, it was found that the distribution
of pore sizes in highly porous systems is well described by a scaling
relation up to intermediate length scales, while dense samples with only
small isolated pores are characterized by a Gaussian distribution of pore
sizes [15]. Moreover, the analysis of local atomic density of solid do-
mains revealed that, with increasing porosity, the local density dis-
tribution function develops a broad plateau and a strong peak in the
vicinity of zero density, which is characteristic of systems with large
surface-to-volume ratio [15]. Nevertheless, the local density of solid
domains away from solid-void interfaces is rather insensitive to
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porosity and its average value is only slightly below the density of a
homogeneous, pore-free glass phase [15].

The mechanical properties and structural transformations of porous
glasses at isochoric conditions were recently studied in the cases of shear,
tension, and compression using molecular dynamics simulations
[16–18]. It was demonstrated that in the linear regime of deformation,
the dependence of shear modulus on the average glass density is well
described by a power-law function with the exponent of 2.41 [16].
Interestingly, the same exponent was obtained for the density-depen-
dence of the elastic modulus during tensile and compressive deforma-
tions, despite the finite value of normal stress at zero strain that appears
in porous samples formed at constant volume [17,18]. In addition, it
was shown that the dependence of shear modulus on porosity at low
average glass densities is in good agreement with the continuum pre-
dictions based on the percolation theory [16,19]. Upon further in-
creasing strain, the pore shapes become significantly deformed and
adjacent pores coalesce with each other, leading to formation of large
voids, necking, and eventually breaking of the material [16,17]. At high
compressive strain, the pore coalescence and void redistribution result
in the formation of nearly homogeneous solid domains, which provide
enhanced resistance to deformation [18]. However, the influence of
various deformation protocols (e.g., constant pressure vs. constant vo-
lume deformation and stress vs. strain-controlled loading) on mechan-
ical and structural properties of porous glasses remains not fully un-
derstood.

In this paper, the structural relaxation of porous glasses, that are
initially prepared at constant volume, is studied in the NPT ensemble
using molecular dynamics simulations. It will be shown that porous
samples become significantly compressed under built-in tensile stresses,
which is reflected in the time evolution of the average glass density and
the shape of the pore size distribution functions. The slow aging process
is also characterized by the gradual decrease in the potential energy.
The mechanical properties are probed at different waiting times by
imposing tensile strain at constant pressure. It is found that the func-
tional form of the elastic modulus as a function of the average glass
density holds for tensile loading at constant volume as well as at con-
stant pressure and different waiting times. The analysis of the atomic
configurations and pore size distributions helps to distinguish the pro-
cess of breaking of the porous samples at large strain for lower average
glass densities from the formation of a nearly homogeneous, high-
density amorphous material.

The paper is organized as follows. The details of molecular dy-
namics simulations as well as the preparation and deformation proto-
cols are described in the next section. The analysis of the pore size
distributions, potential energy, density profiles, and mechanical prop-
erties of porous glasses are presented in Section 3. The brief summary is
given in the last section.

2. MD simulation details

The molecular dynamics simulations described below were per-
formed on a model glass former represented by the Kob-Andersen (KA)
binary mixture [20]. Our system consists of 240 000 large atoms of type
A and 60 000 small atoms of type B, thus making the total number of
atoms N 300000= . Upon cooling, the crystallization of the KA mixture
is suppressed because of the non-additive Lennard-Jones (LJ) interac-
tions [20]. More specifically, the interaction between any two atoms of
types A B, ,= is defined by the LJ potential:

V r
r r

( ) 4 ,
12 6

=
(1)

with the following parametrization: 1.0AA = ,
1.5, 0.5, 0.8AB BB AB= = = , and 0.88BB = [20]. The mass of each

atom type is the same, m mA B= . To speed up computations, the LJ
potential is truncated at the cutoff radius r 2.5c, = . Throughout the

paper, the results are reported in the reduced units of length, mass,
energy, and time, i.e., AA= , m m ,A AA= = , and m/= , re-
spectively. The numerical integration of the Newton’s equations of
motion was carried out using the velocity-Verlet algorithm [21,22] with
the time step t 0.005MD = .

The initial equilibration of the system in the periodic box of con-
stant volume and the subsequent thermal quench across the glass
transition is identical to the preparation procedure implemented in the
previous MD studies [13–18]. Here, we briefly describe the numerical
protocol, which results in the formation of the porous glass. The system
was initially equilibrated at constant volume and the temperature of

k1.5 / B during 3 104× . The Boltzmann constant is denoted by kB. This
temperature is well above the glass transition temperature of the KA
model,T k0.435 /g B, at the atomic density, 1.2A B

3= + = [20].
Next, the temperature was instantaneously reduced to the target value
T k0.05 / B= , and the system was allowed to evolve freely at constant
volume during the time interval of 104 . At the low temperature, the
phase separation leads to the formation of porous structure in the
amorphous solid [13–18]. In the present study, the simulation results
were carried out only for one realization of disorder due to computa-
tional limitations.

After the porous glass samples were prepared at constant volume,
the follow-up MD simulations were performed in the isothermal-iso-
baric (NPT) ensemble, where P 0= and T k0.05 / B= . The temperature
T k0.05 / B= was regulated via the Nosé-Hoover thermostat [21]. As
discussed in detail in the next section, the relaxation process at constant
pressure results in gradual increase of the average glass density even in
the absence of external deformation. The periodic boundary conditions
were applied in all three dimensions, which were allowed to change
independently during densification of the porous samples. Next, the
tensile deformation was imposed along the x direction with the strain
rate, 10xx

4 1= , while the pressure in the y and z directions was
maintained at zero. The maximum strain was varied from 100% to
400% depending on the average glass density. During the production
runs, the pressure components, potential energy, system dimensions as
well as atomic configurations were saved for the postprocessing ana-
lysis of the porous structure and mechanical properties.

3. Results

As discussed in the previous section, the formation of porous glassy
systems occurs in the process of concurrent phase separation and ma-
terial solidification after sufficiently deep thermal quench from a liquid
state [13,14]. The kinetics of the process at low temperature and con-
stant volume becomes logarithmically slow and the particle diffusion in
the glass phase is strongly suppressed [13,14]. An example of the
porous structure in the amorphous solid formed at constant volume
after the long time interval of 104 is shown in Fig. 1(a) for the average
glass density 0.33 = . Notice the complex interconnected pore net-
work embedded into a dense glass phase. Thus formed porous samples
in a wide range of average glass densities, 0.2 1.03 , were used as
starting configurations for the MD simulations performed in the NPT
ensemble and described in the present study.

It should be particularly emphasized that the porous glass formation
at constant volume and low temperature occurs at a negative pressure,
which depends on the target temperature and the average glass density
[15]. Moreover, it was recently deduced from extensive molecular dy-
namics simulations that the data in a wide range of parameters can be
collapsed onto a scaling relation of the form P T/ with the ex-
ponent 2.5 [15]. Thus, at the temperature T k0.05 / B= considered
in the present study, the average values of pressure vary from
P 0.73 / 3 for 0.93 = to P 0.01 / 3 for 0.23 = . In other
words, the glassy porous systems can be viewed as being under tension
in a confined geometry. It is, therefore, expected that when the con-
straint of constant volume is relaxed and the simulations are instead
performed at constant pressure, the porous samples will undergo
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isotropic compression, which is driven by the build-in tensile stresses.
The evolution of atomic configurations at zero pressure and tempera-
ture T k0.05 / B= is shown in Fig. 1 for the indicated waiting times. It
can be clearly observed that the solid phase and the porous network
become gradually compressed and the average glass density increases
over time.

A more quantitative analysis of the relaxation process under internal
stresses at constant pressure, P 0= , can be performed by considering
the time dependence of the average glass density and the potential
energy. First, the variation of the average glass density as a function of
the waiting time is plotted in Fig. 2. It can be seen that the most rapid
densification occurs during the first 1000 , which is followed by a slow
aging process up to 2.5 105× . As evident, the relative increase in the
average glass density during the time interval of 2.5 105× is more
pronounced in lower density samples. Note also that the average glass
density of the two dense samples (two upper curves in Fig. 2) becomes
nearly the same after about 104 . We comment that these dense samples
are not pore-free even after the time interval of 2.5 105× as their
average density is still below the density of the homogeneous glass
phase of about 1.21 3 at zero pressure [28]. Second, the time depen-
dence of the potential energy per atom for the same porous samples is
reported in Fig. 3. Similar to the case of density, the potential energy
starts to decrease rapidly after about 100 followed by a gradual decay
during the next two decades, which suggests that the relaxation dy-
namics becomes progressively more slow. The lowest potential energy
is also attained in two dense samples at t 104 .

The analysis of pore structure and porosity evolution in the systems
under consideration is based on calculation of the pore size distribution
(PSD) functions. To this end, the open-source Zeo++ software was
utilized [23–25]. The pore sizes were computed using the algorithms

Fig. 1. A series of snapshots of the porous glass at zero pressure after time intervals (a) 0 , (b) 500 , (c) 50 000 , and (d) 250 000 . The average glass densities are (a)
0.303 = , (b) 0.373 = , (c) 0.493 = , and (d) 0.523 = . The temperature is T k0.05 / B= and the total number of atoms is N 300000= . Atoms of types A and B

are denoted by blue and red spheres. Note that the size of atoms is reduced for clarity.

Fig. 2. The average glass densities as a function of waiting time during the
aging process at zero pressure and temperature T k0.05 / B= . The average
density of porous samples at t 0= is 0.2, 0.3, 0.43 = ,
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (from bottom to top).

N.V. Priezjev, M.A. Makeev Computational Materials Science 156 (2019) 376–384

378



implemented in Zeo++ [23–25]. The approach involves the Voronoi
decomposition of the total volume of system into Voronoi cells, asso-
ciated with each individual atom in the system. The implementation
derives from a modification to the VORO++ software library, devel-
oped in Ref. [26]. This computational tool provides Voronoi network
and all the parameters necessary for analysis of the geometrical char-
acteristics of void space in porous material systems. The Voronoi de-
composition is performed such that the space surrounding atoms is
divided into polyhedral cells and each face of the polyhedral is a plane
equidistant from the two points sharing the face. Edges of the cells
correspond to lines equidistant to neighboring points, whereas vertices
are equidistant from neighboring points. The Voronoi network, built
thereby, maps the void space in porous systems. Further, the computed
Voronoi network can be utilized to obtain quantitative information on
the largest pore in the systems and the largest pore that can traverse
through it, topological properties of pores and channels, and other
geometric quantities. It should be noted that Zeo++ allows one to
obtain information for model systems with periodic structural units,
comprised of multiple types of atoms. For a given radius of the probe,

one can identify the probe accessible regions of the void-space network
using a graph propagation algorithm. In practice, a variation of the
Dijkstra shortest path algorithm is used [27]. In this work, the analysis
was used to identify the topological properties of channels in the porous
systems. The surface areas of the pores and their volumes are computed
using a Monte Carlo sampling. The number of samples per atom used in
this works is fixed at 50000. The probe radius used for calculations is
0.3 . The value of the probe radius was varied in a wide range and no
significant variations in the results were observed for values less than
1.0 .

The pore size distribution functions, obtained in the process of re-
laxation at constant pressure, are presented in Fig. 4 for the indicated
waiting times. These data were computed in three porous samples after
the constant pressure condition was applied in the absence of external
loading. It can be clearly observed that with increasing average glass
density, the pore size distributions at t 0= become more narrow. This
behavior is consistent with the results of the previous MD studies,
where simulations were performed at constant volume [15–18]. The
distribution functions presented in Fig. 4(a) correspond to atomic
configurations shown in Fig. 1 as well as blue curves in Figs. 2 and 3. It
can be seen that, as the pore network becomes more compact, the shape
of distributions are skewed toward smaller length scales. In agreement
with the slow variation of the average glass density and potential en-
ergy at large waiting times, the PSDs at t 5 104= × and 2.5 105× are
nearly the same, apart from statistical fluctuations. The case of higher
density porous glass shown in Fig. 4(b) appears to be qualitatively si-
milar, although the average pore size is smaller. In contrast, the pore
size distributions in the case shown in Fig. 4(c) evolve to the symmetric,
bell-shaped curve at large times, which is representative of low-porosity
systems, with an ensemble of isolated randomly-distributed pores [15].

We next discuss the mechanical response of the porous glass to
tensile loading at constant pressure P 0= and temperature
T k0.05 / B= . In Fig. 5, the stress-strain curves are plotted for nine
samples with different average glass densities, measured after the
waiting time of 5 104× . The values of the glass density at zero strain
are listed in the legend to Fig. 5. Note that the last two samples have
nearly the same density after 5 104× (see also Fig. 2). In can be seen
that both the slope of the linear region and the yield stress become
larger with increasing average glass density. We comment that in
contrast to a finite stress at zero strain in porous glasses prepared and
strained at constant volume [17,18], the stress is initially zero in all
samples shown in Fig. 5. Furthermore, at larger strain, 0.1xx in Fig. 5,
the stress curves exhibit a shallow maximum and then decay to zero,
indicating breakup of the amorphous material into separate domains
(discussed below). Notice that the failure of denser samples occurs at
higher values of strain. The width of the stress plateau becomes wider in
samples with lower porosity, where the formation of the dominant pore
upon tension along the loading direction and contraction in the other
directions is delayed to higher strain. However, in the three cases of
higher density samples, the stress appears to saturate to a very broad
plateau, which extends up to 2.0xx = . The stress amplitude at the
plateau level is determined by the deformation of a nearly homo-
geneous glass phase, where almost all pores migrated from the bulk of
amorphous material.

The elastic modulus, E, computed in the linear regime of deforma-
tion after the waiting time of 5 104× is shown in the inset to Fig. 5 as a
function of the average glass density. As is evident, the elastic modulus
follows a power-law dependence E 2.41, which is indicated by the
straight dashed line. Interestingly, the same exponent was reported in
our previous studies of tension, compression, and shear of porous
glasses at constant volume [16–18]. For reference, the data for tension
of porous glasses at constant volume [17] are also plotted in the inset to
Fig. 5. As shown in Fig. 2, the average glass density in all samples
gradually increases over time even in the absence of external de-
formation, and, therefore, it is expected that the elastic modulus will be
larger for systems with increased aging time. Indeed, the data collected

Fig. 3. The time dependence of the potential energy per atom for nine samples
at constant pressure P 0= andT k0.05 / B= . The average glass density increases
from top to bottom. The same samples and color codes as in Fig. 2.

Fig. 4. The pore size distributions in quiescent samples during the structural
relaxation process at constant pressure. The average glass densities at t 0= are
(a) 0.33 = , (b) 0.53 = , and (c) 0.83 = . The distribution functions for
different waiting times are indicated by black curves (t 0= ), red curves
(t 5 102= × ), blue curves (t 5 103= × ), green curves (t 5 104= × ), and or-
ange curves (t 2.5 105= × ). Note that scales are different in three panels.
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after longer waiting time of 15 104× reveal that although the elastic
modulus and the average glass density slightly increase in each sample,
the data still follow the same power-law dependence as for the less aged
glasses (see inset in Fig. 5). These results demonstrate that the func-
tional form of the density-dependent elastic modulus of porous glasses
is the same for both deformation protocols, i.e., tension at constant
volume and constant pressure.

The representative snapshots of strained porous glasses, measured
after the waiting time of 5 104× are presented in Figs. 6–8 for different
average glass densities. The atomic configurations for three samples are
shown for the indicated values of strain along the stress-strain curves
reported in Fig. 5. It can be clearly seen that the pore configurations in
less dense samples (shown in Figs. 6 and 7) become significantly dis-
torted, leading to necking and eventually breaking of the material at
large strain. These results are qualitatively similar to the cases of ten-
sion at constant volume reported in the previous MD study [17]. Note,
however, that the average glass density increases slightly during ten-
sion at constant pressure, except at large strain in Figs. 6(d) and 7(d),
where the formation of system-spanning voids contributes to the ap-
parent decrease in the average glass density. By contrast, the de-
formation of the dense porous sample proceeds via the formation of
increasingly dense and homogeneous glass phase (see Fig. 8). Notice
that some isolated pores become significantly elongated in highly
strained samples. We also checked that necking doesn’t occur in the
dense porous glass during tension at constant pressure up to 4.0xx
(not shown).

Fig. 5. The variation of stress xx (in units of 3) as a function of strain during
tensile loading at zero pressure with the strain rate 10xx

4 1= . The samples
with different average glass densities were strained after the waiting time of
5 104× (see text for details). The values of the average glass density at zero
strain are indicated in the legend. In the last two cases, the difference between
measured average densities is beyond the precision. The inset shows the elastic
modulus E (in units of 3) as a function of the average glass density 3. The
data in the inset were computed after the waiting time of 5 104× (blue circles)
and after 15 104× (red crosses). For reference, the data for the elastic modulus
at constant volume (taken from Ref. [17]) are also shown by black diamonds.
The straight dashed line indicates the slope of 2.41.

Fig. 6. Atomic configurations of the strained porous glass at zero pressure and temperature T k0.05 / B= . The values of strain and the average glass density are (a)
0.05xx = and 0.483 = , (b) 0.20xx = and 0.493 = , (c) 0.40xx = and 0.473 = , and (d) 0.60xx = and 0.413 = . The strain rate is 10xx

4 1= . The stress-
strain curve for this sample is marked by blue color in Fig. 5.
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The evolution of pore size distribution functions during tensile
loading after the waiting time of 5 104× are shown in Fig. 9 for the
indicated values of strain. Note that the distributions, plotted in the
panels (a), (b), and (c) in Fig. 9, were computed using atomic config-
urations presented in Figs. 6–8, respectively. It can be seen in Fig. 9(a
and b) that lower density porous samples show the same trend; namely,
the pore size distributions are initially narrow and peaked at

d10 / 15p . With increasing strain, the PSDs become more broad
and a distinct peak develops at large length scales, which corresponds
to the formation of a large void associated with material failure (see
Figs. 6 and 7). These results are similar to the breaking process during
tensile loading at constant volume reported in our previous study [17].
By sharp contrast, the pore size distributions for the higher density
sample in Fig. 9(c) remain confined to small length scales and the
amplitude of PSDs becomes significantly reduced at high strain. This
behavior correlates well with visual observation of strained samples in
Fig. 8, where only a few isolated, highly deformed pores remain at high
strain, thus forming a nearly homogeneous glassy material.

As shown above, a significant rearrangement of the material takes
place during the transition to zero-pressure state as well as in the
process of mechanical loading. Therefore, it is important to quantify the
temporal evolution of density variations in the systems. In our previous
studies [16–18], we analyzed temporal evolution of the density profiles
in model porous glasses undergoing mechanical loading at constant
volume. In what follows, we apply a similar analysis to the atomic
systems under consideration. The methodology of analysis has been
previously described in detail in Refs. [16–18]. A brief summary is as

follows. We numerically compute spatially-resolved density profiles
along the direction of externally applied strain. The quantity of interest
is denoted by x( )s and defined as the number of atoms of either type,
located in a bin with thickness b along the loading direction, and
divided by the volume of the bin, b L Ly z , where Ly and Lz are the box
sizes in the two Cartesian directions perpendicular to the loading di-
rection.

Similar to the previous cases of tensile [17] and compressive [18]
loadings at constant volume, the analysis of spatially-resolved density
profiles reveals a number of notable features pertained to density re-
arrangement during tension at constant pressure. In particular, differ-
ences observed in systems with low and high average densities are
worth noting. In this study, the simulation results are reported for three
samples in Figs. 10–12. At relatively low glass densities, shown in
Figs. 10 and 11, the mechanical failure occurs in the regions with lar-
gest spatial extent of local density deviations from its average value. As
can be observed in Figs. 10 and 11, a dip in x( )s starts to develop
within the regions with low average densities. The process of local
density decrease in these regions is accompanied by simultaneous
densification in the neighboring parts of the system, similar to the
constant volume loading conditions [17]. Also, the shapes of density
patterns are largely preserved in the parts of the systems outside of the
low-density region of largest extent. Specifically, the density patterns
repeat themselves with increasing strain, the only difference being their
magnitudes and lateral shifts. The observed increase in density mag-
nitudes is due to rearrangement of material, when it flows from the low-
density region to the regions of elevated densities. This type of behavior

Fig. 7. Instantaneous snapshots for the values of strain and the average glass density (a) 0.05xx = and 0.693 = , (b) 0.20xx = and 0.733 = , (c) 0.40xx = and
0.803 = , and (d) 0.70xx = and 0.703 = . The stress is denoted by the magenta curve in Fig. 5.
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has also been observed in porous glasses loaded at constant volume
[17].

In contrast, at higher average glass densities, shown in Fig. 12, the
tensile loading at constant pressure leads to qualitatively different
evolution of the density profiles. In this case, the deformation results in
gradual closure of the existing pores. Specifically, the density profiles
reveal a gradual increase in density throughout the sample in the range
of intermediate strains. At large strains, the density profiles become
nearly flat outside of the region with largest extent of deviation from
the average density. Note, however, a small dip of about 10% remains
at strain 1.6xx = . This behavior differs from the one observed for
loading at constant volume, where the dip in the large-extent low-
density region develops with increasing strain [17]. These differences
are due to a competition between two effects. One of the effects is the
material rearrangement within the system and the other is the volume
change due to relaxation at constant pressure. The latter leads to a
decrease in total volume, which does not occur in systems undergoing
evolution at fixed volume.

4. Conclusions

In summary, dynamical evolution of porous glasses from a constant
volume state to zero-pressure state and mechanical response properties
of glasses at constant pressure were investigated using atomistic si-
mulations. We found that the transition to the zero-pressure state is
accompanied by significant increase in average density and corresponds

Fig. 8. Selected snapshots of the porous glass for strains and average glass densities (a) 0.05xx = and 1.03 = , (b) 0.40xx = and 1.113 = , (c) 0.80xx = and
1.163 = , and (d) 1.60xx = and 1.183 = . The stress dependence on strain is indicated by the cyan curve in Fig. 5.

Fig. 9. The pore size distribution functions for three samples strained after the
waiting time of 5 104× . The colorcode for different curves is black ( 0.0xx = ),
red ( 0.05xx = ), blue ( 0.20xx = ), green ( 0.40xx = ), orange ( 0.80xx = ), and
magenta ( 1.60xx = ). The atomic configurations shown in Figs. 6–8 are de-
scribed by the pore size distributions presented in the panels (a), (b), and (c),
respectively.
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to a transition to lower energy states. The temporal evolution of the
pore distribution functions during structural relaxation at zero pressure
were examined. It was revealed that the transition to configurations
with narrower pore-size distributions is energetically favorable, as
compared to the larger pores supported by built-in tensile stresses in the
systems. Both constant-volume and constant pressure configurations, in
the absence of deformation, show randomly distributed, isolated en-
sembles of pores at higher average glass densities, while interconnected
porous structure is formed at lower densities. At constant pressure, the
equilibrium configurations consist of narrower distributions of pores,
which preserve, however, the major characteristics of pore-size dis-
tribution functions observed for samples equilibrated at constant vo-
lume.

The mechanical response properties, studied at zero pressure, reveal
a number of noteworthy features. First, we found that the exponent in
the power-law scaling of the elastic modulus with density is the same as
in the case of tensile, compressive, and shear testing of the systems at
constant volume. Consequently, the effect of built-in stresses on elastic
properties manifests itself primarily in the corresponding porosity
changes. Moreover, as our studies show, the mechanical loading of
porous systems at constant pressure differs from that at fixed volume by
the effect of total volume change. The evolution of pore ensembles in
the systems subjected to tension is similar to the ones characteristic for
the constant-volume loadings at smaller average densities. In these
cases, pore growth and coalescence is favored as compared to the
changes in the system volume. At higher densities, however, the total
volume changes become the dominant effect in the response to the
external loading. This manifests itself in distinctly different behavior of
density profiles in the regime of higher densities as compared to the less
dense samples.
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