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I.  Introduction

The mechanical properties of bulk metallic glasses, such as 
high strength and low ductility, are both of fundamental scien-
tific interest and technological importance [1]. It is now well 
recognized that the plastic deformation of metallic glasses 
below their glass transition temperature involves irreversible 
rearrangements of small clusters of atoms [2]. The plastic flow 
of amorphous materials in response to applied shear stress can 
be described using the shear transformation zone model, which 
takes into account the density and internal state of the localized 
zones [3]. In recent years, various deformation mechanisms 
including elementary plastic events and shear band formation 
were studied at different length and time scales using atom-
istic simulations and finite element modeling [4]. Notably, the 
energy landscape analysis had shown that a large strain cycle 
rejuvenates the glass by increasing the potential energy, while 
a small strain cycle overages the glass by moving the system to 
deeper energy minima [5]. However, many essential features 
of the deformation process in strained amorphous systems 
including a correlation between localized plastic events and 
distribution of avalanches are not fully understood.

The effect of inertia on steadily sheared disordered solids in 
the athermal quasistatic limit was examined in two and three 
dimensions using molecular dynamics simulations [6]. It was 
found that the distribution of avalanche sizes obeys a power-
law decay over about three orders of magnitude in drops of 
the potential energy density and shear stress, and the volume 
of plastically deformed regions is proportional to the energy 
dissipated in an avalanche [6]. In the underdamped regime, 
the system can be carried over successive energy barriers to 
progressively lower minima leading to large avalanches, while 
in the overdamped case, avalanches are smaller and they typi-
cally consist of several disconnected regions oriented along 
diagonal lines [6]. It was also shown that at finite strain rates 
and zero temperature, the correlation between local plastic 
events remains relevant, and the avalanche size scales as the 
inverse square root of strain rate in two dimensions [7].

In the last few years, a number of studies investigated oscil-
latory shear response of amorphous materials using atomistic 
simulations [8–12], continuum modeling [13], and experi-
mental measurements [14–18]. It was found that below a cer-
tain strain amplitude, the disordered systems gradually evolve 
into dissipative limit cycles and particle rearrangements 
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remain reversible, thus retaining memory of the initial con-
ditions [8–10, 12, 14]. The number of back and forth cycles 
required to reach steady state increases as the critical strain 
amplitude is approached from below [8, 10]. Surprisingly, 
it was shown that the cyclic deformation is accompanied by 
plastic rearrangements of atoms that are reversed by the end of 
each cycle [10, 14]. With further increasing strain amplitude, 
particle displacements become irreversible leading to a diffu-
sive behavior and structural relaxation [8, 9, 11, 12].

The elastic response of a two-dimensional amorphous solid 
to a localized shear transformation was recently studied via 
molecular dynamics simulations in different damping regimes 
[19, 20]. In this process, about twenty atoms within a circular 
inclusion were instantaneously sheared in a quiescent system 
and the time evolution of the displacement field was meas-
ured. It was demonstrated that the stationary solution for the 
disorder-averaged displacement field has a quadrupolar sym-
metry and it agrees well with the predictions of the continuum 
elasticity theory [19, 21]. It was further observed that the tran-
sient regime is strongly dependent on the damping dynamics 
and the time dependence of the displacement field obtained 
from molecular dynamics simulations agrees with the con-
tinuum solution in the overdamped case at large times [19]. 
The numerical analysis based on the finite element method 
that takes into account microscopic viscosity and the local 
elastic constants showed that the temporal evolution of the 
disorder-averaged displacement field is similar to the propa-
gation of the elastic signal in a uniform medium [20].

In the previous study [22], molecular dynamics simulations 
were carried out to investigate the influence of a local shear 
transformation on plastic deformation of a three-dimensional 
model glass. The shear transformation was introduced in a 
quiescent system via a spherical inclusion that was gradually 
strained into an ellipsoid and then converted back into the sphere 
during a finite time interval. It was demonstrated that at strain 
amplitudes above a few percent, the structural relaxation of the 
material involved localized plastic events that were identified 
using the cage detection algorithm [23]. The spatial distribution 
of clusters of cage jumps and their radial density profiles were 
studied for various damping conditions and durations of the 
shear event. Interestingly, it was found that the density profiles 
of cage jumps are well described by a universal function mul-
tiplied by a factor that depends on the friction coefficient and 
the shear transformation time scale [22]. It remained unclear, 
however, how this factor varies with the strain amplitude and 
whether it can be expressed as a function of a single variable.

In this paper, the plastic response of the amorphous mate-
rial to a reversible shear transformation is examined over a 
wide range of damping conditions and oscillation time scales. 
The analysis of the density profiles of cage jumps presented 
in the previous study [22] is extended further to describe the 
effect of strain amplitude on the profile shape and the depend-
ence of the density maximum on the friction coefficient and 
oscillation period. In particular, it is demonstrated that, at 
sufficiently slow transformation rates, the peak value of the 
density profiles is a function of the ratio of the friction coef-
ficient and the time scale of the shear transformation and that 
it strongly depends on the strain amplitude.

The rest of the paper is structured as follows. The details 
of molecular dynamics simulation model are described in the 
next section. The analysis of the radial density profiles of cage 
jumps as a function of the time scale of the shear event, fric-
tion coefficient, and the strain amplitude is presented in sec-
tion III. The conclusions are provided in the final section.

II.  Simulation model

The simulated system consists of =N 10 000 particles con-
fined in a three-dimensional cell as shown in figure  1. We 
used a standard model of a glass-forming Lennard–Jones 
(LJ) binary mixture introduced by Kob and Andersen [24]. In 
this model, any two particles α β = A B, ,  interact through the 
Lennard–Jones (LJ) potential
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with the parameters ε = 1.0AA , ε = 1.5AB , ε = 0.5BB , 
σ = 0.8AB , σ = 0.88BB , and =m mA B [24]. The LJ potential is 
truncated at the cutoff radius σ=αβ αβr 2.245c,  [25]. The units 
of length, mass and energy are chosen σ σ= AA, m  =  mA, 
and ε ε= AA, and, consequently, the unit of time is defined 
τ σ ε= m/ . The simulations were performed at a constant 
density ρ ρ ρ σ= + = −1.2A B

3 and the linear size of the 
cubic box is L  =  20.27 σ. Periodic boundary conditions were 
applied along the x̂, ŷ, and ẑ directions.

The motion of particles is governed by the classical 
Langevin dynamics. For example, the equation of motion in 
the x̂ direction for the ith particle of mass m is given by

Figure 1.  A snapshot of the instantaneous configuration of atoms 
of type A (large blue circles) and type B (small red circles) in 
the binary (80:20) LJ mixture. The spherical inclusion is located 
at the center of the periodic cell (black circle). The reversible 
shear transformation is applied to the inclusion atoms, which are 
gradually strained into an ellipsoid of the same volume (dashed 
ellipse) and then returned to their original positions.
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where Γ is the friction coefficient and f i is a random force 
with zero mean and variance δ δ= Γf f t mk T t0 2i j ijB⟨ ( ) ( )⟩ ( )  
determined by the fluctuation-dissipation theorem [26, 27]. 
The Langevin temperature is fixed T  =  10−2 ε k/ B, where kB 
is the Boltzmann constant. The equations  of motion were 
integrated numerically using the fifth-order Gear predictor-
corrector algorithm [28] with a time step =t 0.005MD▵  τ. 
Different realizations of disorder were prepared by quenching 
the system from the temperature 1.1 ε k/ B, which is well above 
≈T 0.45g  ε k/ B [24], to the final temperature T  =  10−2 ε k/ B 

with the rate of 10−5 ε τk/ B . The samples are statistically inde-
pendent because particles were allowed to diffuse during the 
slow quenching process.

We next describe the deformation protocol for the revers-
ible shear transformation. The inclusion atoms were identified 
within a sphere of radius ri  =  3 σ, which is located at the center 
of the simulation cell (see figure 1). The average number of 
atoms in the inclusion is about 135. First, the positions of the 
inclusion atoms were kept fixed while the system was aged for 
about 500 τ at the temperature 10−2 ε k/ B. The spherical inclu-
sion was gradually strained into an ellipsoid and then con-
verted back into the sphere during the time interval τi. Note 
that the major axis of the ellipsoid was oriented along one of 
the diagonals of the simulation box, and the volume of the 
inclusion was kept constant during the transformation. In our 
study, the shear strain is defined as the ratio of the ellipsoid 
semi-major axis to the sphere radius ri  =  3 σ. The variation of 
stain as a function of time from zero to τi is described by the 
following equation

π τ=t tsin / ,i0ε ε( ) ( )� (3)

where 0ε  is the strain amplitude and τi is the time scale of the 
shear event. After the shear transformation, the positions of 
inclusion atoms were kept fixed at their original positions and 
the system was allowed to equilibrate for the additional time 
interval 103 τ. This time interval is larger than the damping 
time Γ1/  for the smallest value of the friction coefficient 
Γ = 0.01 τ−1 considered in the present study. Several test sim-
ulations were performed when the system was equilibrated 
for a larger time interval of ×2 103 τ after the shear transfor-
mation in order to verify that the results remain unchanged. 
Finally, the average atom positions were computed before and 
after the shear transformation and then analyzed in 768 inde-
pendent samples.

III.  Results

In the absence of an externally imposed deformation, the 
atomic structure of the model glass shows no long-range order 
while each atom remains trapped in a cage composed of its 
neighbors during the time scale of the computer simulation at 
the studied temperature. The plastic deformation of the amor-
phous material was induced by a reversible shear transforma-
tion of a spherical inclusion and studied at different damping 

conditions and time scales of the shear event. In our setup, the 
inclusion atoms were displaced to form an ellipsoid with the 
major axis parallel to the (1, 1, 1) direction (see figure 1) in 
order to reduce the effect of periodic boundary conditions. It 
was observed that at sufficiently small strain amplitudes (below 
a few percent), the system response is elastic and all atoms 
return to their cages after the shear transformation [19, 22].

In the present study, the analysis of particle positions was 
performed in the plastic regime when the strain amplitude was 
varied in the range 0.2 0.40ε⩽ ⩽ . We find that at smaller values 
of 0ε , an accurate analysis of particle displacements requires 
averaging over larger number of independent systems, while 
at larger strain amplitudes, the relative distance between 
inclusion atoms becomes comparable to the molecular diam-
eter, thus creating voids at the surface of the inclusion during 
the shear transformation process. Irreversible rearrangements 
of atoms in the material triggered by the shear transformation 
were identified using the cage detection algorithm [23]. Visual 
inspection of snapshots of the simulated system revealed that 
cage jumps tend to aggregate into relatively compact clusters, 
which are predominantly located near the inclusion where the 
deformation of the material during the shear transformation is 
larger [22].

It was shown in the previous study [22] that the clusters of 
cage jumps are approximately power-law distributed with an 
exponent that depends on the strain amplitude. In general, it is 
expected that the density of cage jumps will decay away from 
the center of the inclusion because the maximum local strain 
in the material during the reversible shear transformation 
decreases as a function of the radial distance. For example, 
the displacement and strain fields were calculated analytically 
for a spherical inclusion that was strained into an ellipsoid in 
a two-dimensional plane, while the third direction reminded 
neutral [29]. It was shown that in a stationary regime, the 
strain field has a quadrupolar symmetry and it decays as 1/r3 
from the center of the inclusion in three dimensions [29].

Averaged density profiles of cage jumps as a function of 
the radial distance from the center of the inclusion are plotted 
in figure 2 for the strain amplitude = 0.30ε  in the regime of 
intermediate damping Γ = 1.0 τ−1. Several important fea-
tures are evident. First, the density of cage jumps is reduced 
within about two atomic diameters from the surface of the 
inclusion. This effect originates from the reversible motion 
of the inclusion atoms that effectively form a part of a cage 
for the neighboring atoms of the material, thus reducing the 
probability of their irreversible displacements [22]. Second, 
the density profiles exhibit a maximum at ≈ −r 5 6( ) σ and 
then decay with further increasing radial distance. It was pre-
viously shown that the rate of decay for r 6�  σ correlates 
well with the local deformation of the material, which was 
estimated from the relative displacement of neighboring par-
ticles after the spherical inclusion was irreversibly strained 
into an ellipsoid [22].

In general, we find that the average density of cage jumps 
increases with increasing time scale of the shear transforma-
tion (e.g. see figure 2). At small values of τ = 5i  τ and 10 τ, 
the time scale of the shear event is comparable with the time 
it takes for sound waves to propagate across the system, and 
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thus the probability of formation of large clusters is reduced. 
In contrast, when τ 50i�  τ, the shear stress from the deforming 
inclusion can induce larger clusters of cage jumps, which in 
turn might trigger other irreversible events in the system. In 
addition, as the damping rate decreases, the effect of inertia 
becomes more important, leading to larger avalanches during 
the shear transformation process, and, as a result, larger density 
of cage jumps. This trend was also identified in sheared dis-
ordered solids in the athermal quasistatic limit by examining 
the critical scaling of avalanches at different damping rates [6].

It was further noticed in the previous study [22] that the 
density profiles of cage jumps for different values of τi and Γ 
can be made to collapse onto a master curve if ρ r( ) is divided 
by a scaling factor. In figure 3, we plot the average density 
profiles normalized by the corresponding density peak ρm for 
different values of Γ and strain amplitudes = 0.20ε , 0.3 and 
0.4. It is evident that for each value of the strain amplitude, 
the rescaled density profiles ρ ρr / m( )  collapse on the master 
curves. Note that the data in figure 3 for the two lower values 
= 0.20ε  and 0.3 are shifted for clarity. It can be seen that the 

location of the maximum of ρ ρr / m( )  and the slope of decay for 
r 6�  σ depend of the strain amplitude. The deviation from the 
1/r3 dependence, which describes the decay of the local strain 
away from an elliptical inclusion [29], for larger strain ampli-
tudes = 0.30ε  and 0.4 might be due to the finite system size. 
Remember that at ≈r L /2 10�  σ some atoms interact with 
their neighbors via periodic boundary conditions but the local 
strain is in general not the same across periodic boundaries 
during the shear transformation.

In our study, the maximum of the density profiles of cage 
jumps ρm was estimated in a wide range of parameter values, 
i.e. τΓ0.01 10⩽ ⩽  and 5 τ τ τ10i

3⩽ ⩽ . Figure 4 shows a con-
tour plot of the density peaks ρm as a function of the friction 
coefficient and the shear transformation time scale for the 
strain amplitude = 0.30ε . It can be seen that the density land-
scape is quite complex, but the trends are clear. Namely, at 
small τi in the overdamped regime, the deformation of mate-
rial during the shear transformation is minimal, and thus the 
density of cage jumps is relatively small. In the opposite limit, 

when the shear transformation is very slow and the system 
dynamics is underdamped, the deformation of material is 
largest, facilitating the formation of large clusters, and the 
density of cage jumps saturates to a maximum value of about 
0.037 σ−3 (see figure 4).

It can be further observed that the contour lines in figure 4 
approximately follow a linear dependence between the fric-
tion coefficient and the time scale of the shear event (see the 
straight line with unit slope in figure 4). This correlation holds 

Figure 2.  Averaged radial density profiles of cage jumps for the 
friction coefficient Γ = 1.0 τ−1 and the strain amplitude ε = 0.30 . 
The time scale of the shear transformation is τ τ =/ 5i , 10, 50, 100, 
300, 500, and 1000 from bottom to top.

Figure 3.  Log–log plot of the rescaled density profiles of cage 
jumps for the strain amplitudes ε = 0.20 , 0.3, and 0.4 and the shear 
transformation time scale τ = 100i  τ. For each strain amplitude, the 
friction coefficient is τΓ = 0.01 (solid black curve), 0.1 (dashed 
blue curve), 1.0 (dash–dotted red curve), and 10 (solid green curve). 
The data for ε = 0.20  and 0.3 are displaced vertically for clarity. 
The straight solid and dashed lines indicate slopes  −3 and  −4 
respectively.

Figure 4.  A contour plot of the density peaks ρm (in units of σ−3) 
as a function of the friction coefficient Γ and the time scale of the 
shear event τi for the strain amplitude ε = 0.30 . The contour levels 
are specified in the legend. Open square symbols indicate individual 
data points. The straight line with unit slope is shown as a reference. 
The data points within the dashed region were excluded in the 
analysis of ρm presented in figures 6 and 7 (see text for details).
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over the whole range of parameters Γ and τi, except for the 
data points within the dashed region in figure 4. This, in turn, 
implies that the ratio τΓ/ i computed along a contour level will 
correspond to the same value of the density peak. Therefore, it 
is expected that the data reported outside of the dashed region 
in figure 4 can be collapsed onto a master curve if replotted as 
a function of τΓ/ i. Another argument for using τΓ/ i is that the 
time dependence of the continuum displacement field after an 
instantaneous shear transformation in the overdamped regime 
is roughly proportional to the factor µ− Γe r t/2

, where μ is the 
shear modulus [19]. Therefore, it follows that the local dis-
placement field, which can trigger an irreversible rearrange-
ment of atoms at a distance r from an inclusion, depends on 
the ratio Γ t/ .

The density peaks of cage jumps are first plotted in 
figure  5 as a function of the ratio τΓ/ i for the strain ampli-
tudes = 0.20ε , 0.3 and 0.4 and the same range of parameter 
values as in figure 4. The collapse of the data on three distinct 
master curves is satisfactory; however, the data are somewhat 
scattered at intermediate values of τΓ/ i. As anticipated, the 
scattered data in figure 5 were evaluated for the parameters Γ 
and τi within the dashed region in figure 4. Without these data 
points, the dependence of the density peaks on the ratio τΓ/ i 
is shown in figure 6. It is evident that for τΓ/ 0.01i� , the den-
sity peak saturates to a constant value that corresponds to the 
largest plastic deformation for each strain amplitude. In con-
trast, with increasing τΓ/ i, the density peak gradually crosses 
over to a power-law decay as a function of τΓ/ i. In this regime, 
the density of cage jumps is reduced due to either small time 
scale τi or large friction coefficient.

It is apparent that the shape of the curves shown in figure 6 
is very similar, suggesting that they might be different by a 
factor that depends on the strain amplitude. Indeed, we found 
that when the density peaks for each strain amplitude are 
divided by 0

5ε , the data collapse onto a single master curve 
(see figure 7). The resulting master curve extends over about 

five orders of magnitude in τΓ/ i. Notice that the slope of the 
decay at τΓ/ 0.01i�  depends slightly on the strain amplitude. 
The existence of the plateau in figure 7 implies that the largest 
value of ρm can be obtained in the limiting case of a very slow 
shear transformation for any damping conditions, i.e. when 
τΓ →/ 0i . The significance of the value 5 for the exponent is 

at present not clear. We note, however, that the exponent was 
estimated based only on three data points for 0ε  and the critical 
value of the strain amplitude that marks the onset of irrevers-
ible deformation was not determined in our study. The rela-
tively strong dependence of ρm on the strain amplitude might 
be due the quadrupolar symmetry of the strain field that can 
trigger increasingly large clusters of cage jumps around the 
inclusion upon increasing strain amplitude.

IV.  Conclusions

In this paper, we have examined the structural relaxation in a 
three-dimensional amorphous material induced by a reversible 

Figure 5.  The variation of the density peak ρm as a function of the 
ratio τΓ/ i for the strain amplitudes ε = 0.20  (◊), 0.3 (⚬), and 0.4 (∆). 
The friction coefficient and the time scale of the shear event vary in 
the ranges ⩽ ⩽τΓ0.01 10 and 5 ⩽ ⩽τ τ τ10i

3 , respectively. The data 
were averaged over 768 independent samples and the error bars are 
about the size of the symbols.

Figure 6.  The variation of the density peak ρm as a function of the 
ratio τΓ/ i for the strain amplitudes ε = 0.20  (◊), 0.3 (⚬), and 0.4 
(∆). The same data as in figure 5 except for ⩽τΓ 1 and ⩽τ 10i  τ 
(i.e. except for the data points within the dashed region shown in 
figure 4).

Figure 7.  Master plot of ερ /m 0
5 versus τΓ/ i. The same data as in 

figure 6. The straight line with a slope  −0.5 is shown for reference.
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shear transformation using Langevin dynamics simulations. 
The material was deformed by straining a spherical inclusion 
into an ellipsoid of the same volume and then converting it 
back into the sphere. We found that at sufficiently large strain 
amplitude of the shear transformation, some particles undergo 
irreversible displacements that were identified using the cage 
detection algorithm. The density profiles of cage jumps exhibit 
a distinct maximum near the surface of the inclusion followed 
by a power-law decay as a function of the radial distance. At 
a given strain amplitude, the density profiles are self-similar 
when scaled by the density maximum, which in turn depends 
on the damping rate and duration of the shear transforma-
tion. Moreover, it was demonstrated that the data for the peak 
value of the density profiles can be collapsed onto a master 
curve when plotted as a function of the ratio of the friction 
coefficient and the oscillation period. Overall, these findings 
indicate that the density of cage jumps around the inclusion 
becomes larger in the cases of weakly damped dynamics or 
slow shear transformation.
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