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Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
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Molecular dynamics simulations are performed to investigate heterogeneous dynamics in amorphous glassy
materials under oscillatory shear strain. We consider three-dimensional binary Lennard-Jones mixture well
below the glass transition temperature. The structural relaxation and dynamical heterogeneity are quantified
by means of the self-overlap order parameter and the dynamic susceptibility. We found that at sufficiently
small strain amplitudes, the mean square displacement exhibits a broad subdiffusive plateau and the system
undergoes nearly reversible deformation over about 104 cycles. Upon increasing strain amplitude, the transition
to the diffusive regime occurs at shorter time intervals and the relaxation process involves intermittent bursts of
large particle displacements. The detailed analysis of particle hopping dynamics and the dynamic susceptibility
indicates that mobile particles aggregate into clusters whose sizes increase at larger strain amplitudes. Finally,
the correlation between particle mobilities in consecutive time intervals demonstrates that dynamic facilitation
becomes increasingly pronounced at larger strain amplitudes.
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I. INTRODUCTION

Understanding the relationship between atomic structure
and mechanical properties in amorphous materials is important
in many current applications and emerging technologies [1].
In contrast to crystalline solids, where the plastic deformation
is governed by dislocations, it was originally found that
the plastic activity in amorphous materials is controlled by
the localized shear transformations [2], which were more
recently studied using computer simulations [3–6] and directly
visualized in experiments on colloidal glasses [7,8] and foams
[9]. Under the applied strain, the deformation of amorphous
materials is determined by the cooperative organization of
irreversible rearrangements of small clusters of particles,
which could be triggered by the nonlocal redistribution of
elastic stress [10–13]. The sequence of such plastic events can
lead to an avalanche process characterized by a power-law
scaling of the average stress or energy drops with the system
size [14,15]. Another notable examples of systems with
intermittent, spatiotemporal heterogeneous dynamics include
the Barkhausen crackling noise in magnets subject to an
external magnetic field [16] and the driven block-spring model
in the theory of self-organized criticality [17,18].

In recent years, computer simulations have become an
increasingly important tool for studying slow particle dynam-
ics in molecular liquids near the glass transition at thermal
equilibrium [19]. A common observation is that the mean
square displacement of individual particles is reduced upon
approaching the glass transition temperature from above,
which also results in the broadening of the subdiffusive
plateau that separates the ballistic and diffusive regimes.
More importantly, however, is that the particle mobility in
the subdiffusive regime can be significantly different from
the average value; and, in addition, the particles with similar
mobility become spatially correlated, thus leading to dynamic
heterogeneity [20–22]. The spatial fluctuations of mobile
regions are characterized by the four-point dynamic correlation
function, and they can be efficiently measured by computing
the variance of the self-overlap order parameter, or the dynamic

susceptibility [23,24]. While no obvious changes in spatial
correlations of particle positions are detected near the glass
transition, the dynamic susceptibility provides an estimate of
the number of particles involved in the correlated motion. It is
now well recognized that when a liquid is cooled toward the
glass transition temperature, the peak value of the dynamic
susceptibility increases, indicating that dynamics becomes
spatially increasingly correlated [19]. More recently, it was
shown that in the presence of steady shear flow, the dynamics
of supercooled liquids is more homogeneous as the shear flow
reduces the dynamic correlation length and the lifetime of
dynamical heterogeneity [25].

The microscopic mechanism of structural relaxation in
glassy materials is governed by spatially extended domains of
fast moving particles that can be identified from the analysis
of individual particle trajectories. Hopping particle dynamics
was recently studied in a number of systems, i.e., binary
mixtures below the glass transition [26], supercooled liquids
at thermal equilibrium [27], dense granular media [28,29],
and actively deformed polymer glasses [30]. In each case, a
particle trajectory was decomposed into a series of segments,
where motion takes place inside a cage, separated by fast cage
jumps. Of particular importance is the analysis of cage jumps
and their spatiotemporal clusterization performed in the cyclic
shear [28] and the fluidized bed [29,31] experiments of two-
dimensional granular media. In both experiments, it was found
that the major structural relaxation events are well correlated
with the bursts of cage jumps. Furthermore, these cage jumps
tend to aggregate into clusters, whose sizes are approximately
power-law distributed [28,29]. In turn, several clusters might
dynamically facilitate each other and form avalanches, which
propagate along the soft regions of the system [27–29]. One of
the motivations of the present study is to examine the collective
motion of particles and dynamic facilitation in periodically
deformed three-dimensional amorphous materials.

In this paper, molecular dynamics simulations are em-
ployed to study the relaxation dynamics in the Kob-Andersen
Lennard-Jones binary mixture model at a finite temperature
well below the glass transition. The three-dimensional system

052302-11539-3755/2013/87(5)/052302(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.052302


NIKOLAI V. PRIEZJEV PHYSICAL REVIEW E 87, 052302 (2013)

is periodically strained over many cycles, probing regions
with low instability thresholds, which leads to intermittent
localized rearrangements of particles. The applied periodic
shear strain is spatially homogeneous, thus preventing the
formation of shear bands. We find that at sufficiently large
strain amplitudes the particle dynamics is purely diffusive,
while at lower amplitudes, the mean square displacement
develops an extended subdiffusive plateau. The analysis of
the dynamical susceptibility and particle hopping dynamics
reveals the spatial heterogeneity of structural relaxation.

The rest of the paper is organized as follows. The details
of molecular dynamics simulations are described in the
next section. The results for the particle diffusion, hopping
dynamics, and microstructure of clusters of mobile particles,
as well as the analysis of the two- and four-point correlation
functions are presented in Sec. III. The conclusions are given
in the last section.

II. MOLECULAR DYNAMICS SIMULATION MODEL

The three-dimensional amorphous material is modeled as
the Kob-Andersen binary (80:20) Lennard-Jones mixture with
nonadditive interaction parameters that prevent crystallization
[32]. The snapshot of the equilibrated system which consists of
Np = 2940 particles is presented in Fig. 1. In this model, any
two particles α,β = A,B interact via the pairwise Lennard-
Jones (LJ) potential,

Vαβ(r) = 4 εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
, (1)

where εAA = 1.0, εAB = 1.5, εBB = 0.5, σAB = 0.8, σBB =
0.88, and mA = mB . The cutoff radius is taken to be twice
the minimum position of the LJ potential rc, αβ = 2.245 σαβ

[33,34]. In what follows, the units of length, mass, and
energy are set to be σ = σAA, m = mA, and ε = εAA, and,
correspondingly, the unit of time is defined as τ = σ

√
m/ε.

The equations of motion were solved numerically using the
fifth-order Gear predictor-corrector algorithm [35] with a time
step �tMD = 0.005 τ .
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FIG. 1. (Color online) A snapshot of instantaneous positions of
particles A (large blue circles) and B (small red circles) at mechanical
equilibrium. The particle sizes are not drawn to scale. During the
oscillatory motion, the periodic shear strain was applied in the xz

plane (indicated by the arrows).

All simulations were performed at a constant volume with
the total density ρ = ρA + ρB = 1.2 σ−3 and temperature
0.1 ε/kB , where kB is the Boltzmann constant. This tempera-
ture is well below the value 0.45 ε/kB at which the computer
glass transition is detected [32]. The constant temperature
was maintained by rescaling the velocity component in the
ŷ direction (perpendicular to the plane of shear). As indicated
in Fig. 1, the system dimensions are measured Lx = 12.81 σ ,
Ly = 14.79 σ , and Lz = 12.94 σ . In order to simulate ho-
mogeneous, time-dependent shear strain, the Lees-Edwards
periodic boundary conditions [35] were implemented with the
SLLOD equations of motion [36]. It should be mentioned
that in contrast to the boundary-driven shear algorithms, the
spatially homogeneous shear strain prevents the formation of
shear bands [37].

The time-periodic shear strain was imposed (in the xz

plane) by varying the strain rate as a function of time
γ̇ (t) = γ̇0 cos(ωt), where ω is the oscillation frequency and
γ̇0 is the strain rate amplitude. We define the strain amplitude
as a ratio of the strain rate amplitude over the frequency, i.e.,
γ0 = γ̇0/ω. For the results reported in this paper, the oscillation
frequency was set ωτ = 0.02, with the corresponding period
T = 2π/ω = 314.16 τ ; and the strain amplitude was varied in
the range γ0 � 0.08.

The system was first equilibrated for about 5 × 106 molecu-
lar dynamics (MD) steps at a constant volume and temperature
1.2 ε/kB in the absence of shear, and then gradually quenched
to the final temperature 0.1 ε/kB with steps of 0.1 ε/kB . After
the oscillatory shear strain was applied, the first 2 × 107

MD steps were discarded to avoid quench-rate and aging
effects. During the oscillatory motion, the measurements of
particle positions were taken every back and forth cycle when
strain is zero. The data were accumulated over 12 000 cycles
(about 7.5 × 108 MD steps) at each strain amplitude, and the
postprocessing analysis of particle trajectories was performed
in six independent systems.

III. RESULTS

At the studied temperature and density, an equilibrated
model glass in the absence of deformation is characterized
by the amorphous liquid-like molecular structure where most
of the atoms remain in cages formed by their neighbors on the
time scale accessible to computer simulations [32]. A typical
steady shear stress-strain response involves an elastic defor-
mation at strains below a few percent and a yield stress that
depends on the physical aging and strain rate [34,38]. During
the elastic and plastic deformations, the atoms can undergo
nonaffine, irreversible displacements, which, depending on the
strain, might form cascades spanning a considerable fraction of
the system [39]. Thus, instead of temperature, the consecutive
irreversible displacements of atoms are governed by the strain
rate as a control parameter [40]. In the present study, the amor-
phous material is periodically deformed, and the particle posi-
tions are saved every cycle at zero strain. In such a setup, the
affine deformation field, which is present at steady shear strain,
is zero, and, therefore, any irreversible particle rearrangements
will contribute to the structural relaxation of the material.

The mean square displacement (MSD) averaged over both
A and B particles is plotted in Fig. 2 as a function of time
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FIG. 2. (Color online) The mean square displacement of A and
B particles as a function of time for the oscillation frequency ωτ =
0.02 and period T = 2π/ω = 314.16 τ . The strain amplitudes from
bottom to top are γ0 = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08.
The dashed line with unit slope is plotted for reference.

for the frequency ωτ = 0.02 and various strain amplitudes. To
compute the displacement, the position of the system center
of mass was subtracted from the position of each particle. It
can be observed in Fig. 2 that at small strain amplitudes, γ0 �
0.06, the MSD curves exhibit a broad subdiffusive plateau,
which becomes more pronounced at smaller strain amplitudes,
and a gradual crossover to diffusive motion. In contrast, at
larger strain amplitudes, γ0 � 0.07, the subdiffusive regime is
absent, and the slope of the MSD curves becomes equal to 1
at times t � 10 T as indicated by the straight dashed line in
Fig. 2. At the largest time interval t = 1.2 × 104 T , the particle
displacement is still about the cage size for the strain amplitude
γ0 = 0.02, which implies that during the periodic deformation
the system dynamics is nearly reversible. Note also that the
ballistic regime is not observed in any of the MSD curves
as it occurs at times much smaller than the oscillation period
T = 314.16 τ .

The appearance of the extended subdiffusive plateau in
the MSD curves reported in Fig. 2 suggests that the particle
dynamics might be spatially heterogeneous on the length scales
of about the cage size. The structural relaxation in amorphous
materials is commonly quantified via the self-correlation
function, which is defined as follows:

Qs(a,t) = 1

Np

Np∑
i=1

exp

(
− �ri(t)2

2 a2

)
, (2)

where �ri(t) = ri(t0 + t) − ri(t0) is the displacement vector
of the ith particle, t is the lag time, and a is the probed length
scale [41]. In turn, the extent of dynamical heterogeneity
is measured by the four-point correlation function, or the
dynamical susceptibility, which is computed as the variance of
the self-correlation function:

χ4(a,t) = Np[〈Qs(a,t)2〉 − 〈Qs(a,t)〉2], (3)

where the brackets 〈·〉 denote averaging over all initial times
and independent runs [23]. At a given time lag, the correlation
function χ4(a,t) provides an estimate of the number of
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FIG. 3. (Color online) The self-correlation function Qs(a,t)
defined by Eq. (2) for the oscillation frequency ωτ = 0.02 and period
T = 2π/ω = 314.16 τ . The probed length scale is a = 0.12 σ . The
strain amplitudes from top to bottom are γ0 = 0.02, 0.03, 0.04, 0.05,

0.06, 0.07, and 0.08.

particles involved in a cooperative displacement over the
length scale a [19]. At some intermediate time and length
scales, the function χ4(a,t) usually displays a maximum
indicating the largest spatial correlation between localized
particles [23].

The time dependence of the self-correlation function
Qs(a,t) is illustrated in Fig. 3 when ωτ = 0.02 and the
parameter a is slightly larger than the cage size, i.e., a =
0.12 σ . As is evident, the correlation function Qs(a,t) decays
faster at larger strain amplitudes. Note that at smaller strain
amplitudes γ0 � 0.05, the system is not fully relaxed even at
the largest time interval t = 1.2 × 104 T . On the other hand,
at the smallest time interval t = T , the function Qs(a,t) is
less than 1.0 because of the thermal vibrations inside a cage.
Further, the dynamic susceptibility χ4(a,t) is shown in Fig. 4
for the same parameters ωτ = 0.02 and a = 0.12 σ . It can
be observed that the correlation function χ4(a,t) exhibits a
pronounced peak, whose magnitude increases at larger strain
amplitudes, indicating progressively larger size of dynami-
cally correlated regions. The intermittent displacements of
neighboring particles at larger stain amplitudes produce greater
fluctuations in Qs(a,t) and lead to an increase in the dynamic
susceptibility. Upon increasing strain amplitude, the peak is
displaced to smaller times, which is consistent with the onset of
the diffusive regime in MSD curves reported in Fig. 2. Finally,
assuming that the correlated regions are compact, the dynamic
correlation length ξ4 can be estimated from the peak value of
χ4(a,t) at a = 0.12 σ . The inset in Fig. 4 shows ξ4 as a function
of the stain amplitude. It is seen that the data are well fitted by
the power-law function with the exponent of about 0.9 (straight
red line in Fig. 4). We note that these results are in contrast
to those obtained in previous MD studies on steady shear of
supercooled liquids [25] and glasses [40], where it was found
that with increasing shear rate, the dynamical heterogeneity is
suppressed and the dynamic correlation length decreases.

One should keep in mind, however, that the dynamic
susceptibility is an averaged quantity, which measures mean
square fluctuations of the number of mobile particles, and, thus,
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FIG. 4. (Color online) The dynamic susceptibility χ4(a,t) for
the oscillation frequency ωτ = 0.02 and a = 0.12 σ . The strain
amplitudes from bottom to top are γ0 = 0.02, 0.03, 0.04, 0.05, 0.06.
The oscillation period is T = 314.16 τ . The inset shows the dynamic
correlation length ξ4 = [χmax

4 (t)]1/3 as a function of the strain
amplitude γ0. The red line with a slope 0.9 is the best fit to the
data.

it does not completely describe the microscopic mechanism of
structural relaxation. We next perform a more detailed analysis
of the particle hopping dynamics and the local microstructure
of clusters of mobile particles.

At sufficiently low temperature and small strain, a typical
particle trajectory in a glassy material consists of rapid hopping
events separated by the rattling motion within a cage. Hence,
the hopping dynamics is controlled by the cage-to-cage jumps,
which, in practice, can be identified by a numerical algorithm
recently introduced by Candelier et al. [28]. In essence, this
algorithm is based on the spatial separation of two consecutive
segments of a particle trajectory. More specifically, the
measure of the distance separating two segments is defined
by the product of the root mean square distances between all
points within the segments to the center of mass of the other
segment [28]. Furthermore, the effective distance between
two segments is normalized by a factor that counterbalances
large fluctuations arising from averaging over short segments.
During the iterative procedure, the cage jumps are detected if
the effective distance is greater than the typical cage size, and
the whole trajectory is consecutively divided into a number
of segments where the particle motion takes place inside
a cage. This algorithm was successively applied to identify
cage jumps in two-dimensional granular systems under cyclic
loading [28], in the fluidized bed experiment [29], and in
supercooled liquids at mechanical equilibrium [27].

In the present study, the cage detection algorithm was
used to analyze three-dimensional trajectories of individual
particles as follows. First, we choose a subset of points in the
particle trajectory, divide the subset in two adjacent segments,
and then compute the effective distance separating these two
segments. If the effective distance between any two adjacent
segments within the subset is less than the cage size, rc =
0.1 σ , then the particle was considered being in the cage during
the time interval defined by the subset. For every particle, the
procedure was repeated for all time intervals greater than 10 T
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FIG. 5. The number of particles undergoing cage jumps as
a function of time for the oscillation frequency ωτ = 0.02, pe-
riod T = 2π/ω = 314.16 τ , and strain amplitudes (a) γ0 = 0.02,
(b) γ0 = 0.04, and (c) γ0 = 0.06. Note that the vertical scale is
different in panel (c).

and less than 100 T and all initial times. As a result, all particle
trajectories were decomposed into successive cages separated
by cage jumps, which typically consist of several consecutive
points each. A visual examination of the trajectories revealed
two types of jumps; namely, reversible, where a particle
jumps back and forth between the averaged positions, and
irreversible, where a particle permanently escapes its cage.
This is consistent with the results of previous MD studies of
glassy systems at equilibrium [26,42,43].

Figure 5 shows the total number of particles undergoing
cage jumps as a function of time for three representative
cases at strain amplitudes γ0 = 0.02, 0.04, and 0.06. It is
clearly observed that the periodic deformation generates a
heterogeneous temporal response characterized by intermittent
bursts of large particle displacements. It is apparent that the
amplitude of the bursts and frequency of their occurrence
increase at larger strain amplitudes. During the time intervals
between the bursts, we also detect a finite number of cage
jumps that are assisted by thermal activation. Following
tradition, the frequency spectrum of the data series in Fig. 5
was determined by computing their discrete Fourier transform.
Within the reported time interval, the power spectrum at each
strain amplitude exhibits a power-law decay with the exponent
of about 2 (not shown), which is indicative of a simple
Brownian noise. This is in contrast with the inverse frequency
spectrum of the so-called flicker noise found in many complex
systems that are characterized by scale-invariant avalanchelike
processes and described by the phenomenon known as self-
organized criticality [17,18,44].

A more direct evidence of spatial heterogeneity can be
obtained from visualization of instantaneous positions of
mobile particles. Snapshots of mobile particle positions during
intermittent bursts are presented in Fig. 6 for different strain
amplitudes. It is clearly seen that the particles undergoing cage
jumps mostly aggregate into clusters whose sizes increase at
larger strain amplitudes. A number of previous studies of het-
erogeneous dynamics in glassy materials have demonstrated
that the sizes of clusters of mobile particles are power-law
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FIG. 6. (Color online) Typical clusters of mobile particles A

(large blue circles) and B (small red circles) for the oscillation
frequency ωτ = 0.02 and strain amplitudes (a) γ0 = 0.02, (b) γ0 =
0.03, (c) γ0 = 0.04, and (d) γ0 = 0.05.

distributed [28,29,44]. As shown in Fig. 5, the structural
relaxation process involves only a few large-scale cooperative
clusters during the time interval 104 T , and, as a consequence,
we find that the probability distribution of cluster sizes of more
than about 20 particles is subject to large statistical uncertainty
(not shown). We further comment that in order to identify an
avalanchelike process, a power-law distribution of cluster sizes
needs to be resolved, which, in our case, would require longer
simulation time and, possibly, larger system size.

It was recently suggested that dynamic facilitation might
be one of the important mechanisms leading to spatiotemporal
heterogeneity in glassy materials [45]. In the context of
kinetically constrained models, dynamic facilitation can be
quantified either by the mobility transfer function between
highly mobile regions and nearby regions that were previously
mobile, or by the facilitation volume, which measures the
spatial extent of mobile regions initiated by localized excita-
tions [46]. In MD simulations of glass-forming liquids, the
mobility transfer function was computed for mobile particles
near their neighbors that were previously mobile [47,48].
In particular, it was demonstrated that mobility propagates
continuously through the system, and dynamic facilitation
becomes increasingly pronounced upon supercooling [47,48].

In the present study, two measures of dynamic facilitation
were considered based on the results of the cage detection
algorithm applied to individual particle trajectories. First,
it was determined whether a particle was mobile at a given
time step and it remained immobile during the preceding time
interval � t . Next, we checked if the particle had at least one
mobile nearest neighbor during the time interval � t . Figure 7
shows the ratio of dynamically facilitated mobile particles and
the total number of particles that become mobile after � t/T

cycles. It can be seen that the ratio Nf /Ntot increases with
increasing strain amplitude, implying that dynamic facilitation
plays a more important role at larger strain amplitudes. Note
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FIG. 7. (Color online) The ratio of dynamically facilitated mobile
particles and the total number of mobile particles at a given time step,
provided that they were immobile during the preceding time interval
� t (see text for details). The strain amplitudes from bottom to top
are γ0 = 0.02, 0.03, 0.04, 0.05, 0.06. The inset shows the ratio of
dynamically facilitated particles and the total number of particles
that become mobile during the time interval � t , given that they were
immobile during the previous time interval � t . The color code for
γ0 is the same; the strain amplitude increases from bottom to top.

also that at the strain amplitude γ0 = 0.06 and � t/T � 103,
nearly all particles undergo cage jumps after being in contact
with mobile regions. In contrast, at the strain amplitude
γ0 = 0.02, the ratio Nf /Ntot appears to saturate at about
0.65, which characterizes the relaxation dynamics that
involves single particles undergoing reversible jumps and
rearrangement of small clusters of particles [e.g., see Fig. 6(a)].

Similar to the analysis presented in the previous MD
studies [47,48], we also computed the correlation between
particle mobilities in back-to-back time intervals of equal
duration � t . Namely, we only selected particles that were
mobile at least once during the time interval � t but always
immobile during the preceding time interval � t . Then, the
dynamically facilitated mobile particles were identified if there
was at least one mobile nearest neighbor during the preceding
time interval � t . The results are shown in the inset of Fig. 7.
Although the data are somewhat noisy, the trend is clear: an
increasingly larger fraction of mobile particles are dynamically
facilitated at larger strain amplitudes. Thus, regardless of the
definition, the results of numerical simulations indicate that, as
the strain amplitude increases, there is a higher probability to
find a mobile particle that was previously located near mobile
regions.

IV. CONCLUSIONS

In this paper, we performed molecular dynamics simula-
tions to study heterogeneous relaxation dynamics in an amor-
phous material under spatially homogeneous, time-periodic
shear strain deformation. The three-dimensional amorphous
material was modeled as the binary Lennard-Jones mixture
at a temperature well below the glass transition. During the
oscillatory deformation, the particle positions were stored
every cycle when the net strain is zero. We found that at small
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strain amplitudes, the mean square displacement develops
an extended subdiffusive plateau followed by the diffusive
regime, whereas at larger amplitudes only the diffusive regime
is present at the reported time scales.

The structural relaxation was described by the decay of the
self-overlap correlation function, which indicated that at small
strain amplitudes the system dynamics is nearly reversible
over about 104 cycles, while at strain amplitudes above a few
percent, almost all particles undergo irreversible displacements
and escape their cages. With increasing strain amplitude, the
dynamic susceptibility exhibits a pronounced peak at interme-
diate time and length scales, and the magnitude of the peak
increases at larger strain amplitudes, indicating progressively
larger size of dynamically correlated regions. Furthermore,

the detailed analysis of particle hopping dynamics revealed
that the periodic deformation generates a heterogeneous
temporal response characterized by intermittent bursts of large
particle displacements. Last, our numerical simulations have
shown that dynamic facilitation of mobile particles becomes
increasingly important as the strain amplitude increases.
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