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Dynamical heterogeneity in periodically deformed polymer glasses
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The dynamics of structural relaxation in a model polymer glass subject to spatially homogeneous, time-periodic
shear deformation is investigated using molecular dynamics simulations. We study a coarse-grained bead-spring
model of short polymer chains below the glass transition temperature. It is found that at small strain amplitudes,
the segmental dynamics is nearly reversible over about 104 cycles, while at strain amplitudes above a few percent,
polymer chains become fully relaxed after a hundred cycles. At the critical strain amplitude, the transition from
slow to fast relaxation dynamics is associated with the largest number of dynamically correlated monomers as
indicated by the peak value of the dynamical susceptibility. The analysis of individual monomer trajectories
showed that mobile monomers tend to assist their neighbors to become mobile and aggregate into relatively
compact transient clusters.
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I. INTRODUCTION

The analysis and optimization of the mechanical per-
formance of amorphous polymers are critical for various
industrial and biomedical applications [1]. In the absence
of external deformation, the molecular motion slows down
and a polymer glass gradually evolves towards an equilibrium
state in a process called physical aging, which affects the
mechanical properties of the material [2]. In turn, the effects
of physical aging can be removed by the application of
mechanical stresses or by heating above the glass transition
temperature and then cooling back down [2]. According to
the well-known Eyring model, an applied stress lowers the
effective energy barriers for molecular motion and thus induces
yield and plastic flow in polymer glasses [3]. This simple
description, however, does not include the effects of dynamical
heterogeneity, strain localization, and strain hardening [4,5].

It was previously demonstrated that the relaxation dynamics
in quiescent polymer glasses near the glass transition temper-
ature becomes spatially heterogeneous [6–8]. In particular, it
was shown that the most mobile monomers form transient
clusters whose mean size increases upon cooling towards the
glass transition temperature [7]. In some cases, neighboring
monomers undergo large displacements and follow each other
in a string-like fashion [8]. Near Tg , the average string length
was found to be about two monomer diameters, although
strings of about ten monomers were observed [8]. As expected,
polymer chain ends are more mobile; however, the mobility
does not necessarily propagate along the backbone of the
chains [8]. More recently, the spatiotemporal distribution of
monomer hopping events was investigated in an aging polymer
glass quenched below the glass transition temperature [9]. It
was shown that before merging into a single dominating clus-
ter, the volume distribution of clusters of hopping monomers
follows a power-law decay with an exponent of two, and the
clusters have slightly noncompact shapes [9].

The segmental mobility during constant stress or strain
rate deformation of polymer glasses was recently studied
experimentally [10–12] and using molecular dynamics (MD)
simulations [13–18]. In general, it was shown that after
flow onset, the segmental mobility is strongly accelerated
and the distribution of relaxation times is narrowed under
active deformation. It was also found that before the onset of

flow, the deformation-induced molecular mobility is spatially
heterogeneous, involving the formation of clusters of mobile
molecules [16]. By decomposing monomer trajectories into
a series of rapid hopping events, it was observed that the
distribution of the first hop and persistence times is narrowed,
which indicates that the monomer relaxation dynamics is
accelerated during constant strain rate deformation [17,18].
As a complimentary approach to probe glassy dynamics,
the analysis of individual particle trajectories was also per-
formed in amorphous materials under cyclic shear deformation
[19–25]. By employing a novel cage decomposition algorithm,
it was demonstrated that intermittent bursts of cage jumps
are directly correlated with the major structural relaxation
events in a two-dimensional dense granular media [19]. It
was further pointed out that the relaxation process involves
spatially clustered cage jumps, which on long time scales
aggregate into avalanches [19].

In a recent study [21], the relaxation dynamics in a period-
ically deformed binary Lennard-Jones mixture was examined
at a finite temperature well below the glass transition. It
was found that the mean-square displacement developed an
extended subdiffusive plateau associated with cage trapping,
and the particle dynamics becomes spatially and temporally
heterogeneous. Furthermore, the dynamic correlation length,
which was estimated from the peak of the dynamical sus-
ceptibility, grows with increasing strain amplitude up to a
value that corresponds to the largest size of dynamically
correlated regions. One of the aims of the current study is to
test whether these conclusions hold for nonentangled polymer
glasses under cyclic loading.

In this paper, we investigate structural relaxation and
dynamical heterogeneity in a bead-spring model of low-
molecular-weight polymer glass that is subject to spatially
homogeneous, time-periodic shear deformation. We find that
at sufficiently small strain amplitudes, the system dynamics is
nearly reversible, while at amplitudes above a few percent,
monomers undergo irreversible cage jumps that become
spatially aggregated into relatively compact clusters. It will
be shown that at the critical strain amplitude, the dynamic
correlation length exhibits a distinct maximum indicating the
largest size of regions over which the motion of monomers is
spatially correlated.
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The rest of the paper is structured as follows. The de-
scription of molecular dynamics simulations is presented in
Sec. II. In Sec. III, we examine the mean-square displacement
of monomers, the autocorrelation function of normal modes,
as well as the self-correlation function and dynamical sus-
ceptibility, followed by the analysis of the monomer hopping
dynamics and the discussion of dynamic facilitation. Brief
conclusions are provided in the final section.

II. DETAILS OF MOLECULAR DYNAMICS SIMULATIONS

In this study, we perform molecular dynamics simulations
of the coarse-grained bead-spring model of flexible polymer
chains [26]. The system consists of 312 linear chains of N =
10 monomers each confined in a periodic cubic cell. A snapshot
of the polymer glass at zero strain is shown in Fig. 1. The
pairwise interaction between monomers is specified by the
truncated Lennard-Jones (LJ) potential

VLJ(r) = 4 ε

[(
σ

r

)12

−
(

σ

r

)6 ]
, (1)

where the parameters ε and σ denote the energy and length
scales, respectively. The cutoff radius is fixed to rc = 2.245 σ .
The total number of monomers in the system is Nm = 3120.
In addition to the LJ potential, any two neighboring beads in
a polymer chain interact via the finitely extensible nonlinear
elastic (FENE) potential [27]

VFENE(r) = −ks

2
r2
o ln

[
1 − r2/r2

o

]
, (2)

with the parameters ks = 30 εσ−2 and ro = 1.5 σ [26]. The
effective bond potential between neighboring beads does not
allow chain crossings and bond breaking even at the highest
strain amplitude considered in the present study.
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FIG. 1. (Color online) A snapshot of the polymer glass during
homogeneous time-periodic shear deformation with the strain am-
plitude γ0 = 0.02 and frequency ωτ = 0.05. Four chains of N = 10
monomers are marked by solid lines and filled circles (not drawn to
scale). The black arrows indicate the direction of the applied shear
strain. The Lees-Edwards periodic boundary conditions are imposed
in the xz plane.

The simulations were carried out at a constant temperature
of 0.1 ε/kB , which is below the glass transition temperature
Tg ≈ 0.32 ε/kB [28]. Here, kB is the Boltzmann constant.
To keep the system temperature at 0.1 ε/kB , the velocity
component perpendicular to the plane of deformation was
rescaled every ten MD steps. The polymer glass was confined
into a cubic box with a side length of 14.29 σ , resulting in a
monomer density ρ = 1.07 σ−3 (see Fig. 1). A homogeneous
shear deformation was imposed using the SLLOD algorithm
combined with the Lees-Edwards periodic boundary condi-
tions [29]. The equations of motion were integrated using the
fifth-order Gear predictor-corrector algorithm [30] with a time
step �tMD = 0.005 τ , where τ = σ

√
m/ε is the LJ time.

After equilibration for about 5 × 106 MD steps, the cyclic
shear strain was applied in the xz plane by varying strain as a
function of time as follows

γ (t) = γ0 sin(ωt), (3)

where γ0 is the strain amplitude and ω is the oscillation
frequency. In our simulations, the oscillation frequency and
period were fixed to ωτ = 0.05 and T = 2π/ω = 125.66 τ ,
respectively. The maximum strain amplitude considered in the
present study, γ0 = 0.09, is greater than the yield strain. After
discarding transients, the positions of all monomers were saved
every back and forth cycle when the net strain was zero, and the
data were gathered over 15 000 cycles (about 3.8 × 108 MD
steps) at each strain amplitude. Therefore, as the cyclic loading
continues, the structural changes in the material are related
to the degree of overlap between monomer configurations at
different times. The postprocessing analysis of the MD data
was carried out in ten independent samples for each γ0.

III. RESULTS

The molecular structure of amorphous polymers is char-
acterized by the short-range order and the absence of any
long-range order or symmetry [31]. During the time-periodic,
steady-state deformation, monomers of a polymer chain either
remain trapped within cages formed by their neighbors or
undergo irreversible displacements, which gives rise to a
diffusion process. Figure 2 shows the time dependence of the
mean-square displacement of monomers for different strain
amplitudes. Before averaging, the displacement vector for each
monomer was computed with respect to the center of mass of
the whole system. It can be seen that with increasing strain
amplitude, the characteristic time for the onset of the diffusive
motion decreases. Notice that at small strain amplitudes,
γ0 = 0.02 and 0.03, monomers remain trapped in their cages
during the time interval 15 000 T , while at larger amplitudes,
γ0 = 0.04 and 0.05, monomers escape from their cages after
about 1000 T . When γ0 ≥ 0.06, the monomer dynamics is
slightly subdiffusive at long times as the displacement of
monomers is restricted by the motion of the center of mass
of polymer chains. Interestingly, at large strain amplitudes
γ0 ≥ 0.07, monomers, on average, move out from their cages
during a single oscillation cycle. Lastly, the ballistic regime
occurs at shorter time scales than the oscillation period
T = 125.66 τ , and, therefore, it is not present in any of the
curves in Fig. 2.
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FIG. 2. (Color online) The averaged mean-square displace-
ment of monomers as a function of time for the oscilla-
tion frequency ωτ = 0.05 and period T = 2π/ω = 125.66 τ . The
strain amplitudes from bottom to top are γ0 = 0.02,0.03,0.04,

0.05,0.06,0.07,0.08, and 0.09. The straight black line with the slope
0.87 is shown for reference.

The relaxation dynamics of polymer chains can be probed
by analyzing the decay of the time autocorrelation function of
normal modes [32,33]. For a polymer chain that consists of N

monomers, the normal coordinates are defined by

Xp(t) = 1

N

N∑
i=1

ri(t) cos
pπ (i − 1/2)

N
, (4)

where ri is the position vector of the ith monomer and p =
0,1, . . . ,N − 1 is the mode number. The shortest and longest
relaxation times correspond to the last p = N − 1 and the
first p = 1 modes. Correspondingly, the time autocorrelation
function for the pth normal mode is computed as follows:

Cp(t) = 〈Xp(t) · Xp(0)〉/〈Xp(0) · Xp(0)〉, (5)

where the angle brackets denote averaging over initial times
and independent samples. The time dependence of the cor-
relation functions C1(t) and C9(t) is presented in Fig. 3
for the oscillation frequency ωτ = 0.05 and different strain
amplitudes. The orientational dynamics of the whole chain is
described by the function C1(t). It is evident from Fig. 3(a),
that the orientation of polymer chains is unaffected by the
periodic deformation for strain amplitudes γ0 ≤ 0.05, while
they become fully relaxed for γ0 ≥ 0.07 during the reported
time interval. As expected, the segmental dynamics is faster;
e.g., the function C9(t) decays to nearly zero after 1.5 × 104

cycles for the strain amplitude γ0 = 0.06, as shown in Fig. 3(b).
These results indicate that with increasing amplitude of the
shear strain deformation, the relaxation dynamics of polymer
chains undergoes a transition at the strain amplitude of about
γ0 ≈ 0.06.

The structural relaxation process in glassy materials of-
ten involves spatial fluctuations of particle mobilities [34].
During periodic deformation, the degree of overlap between
two spatial configurations of monomers is described by the
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FIG. 3. (Color online) The autocorrelation function of (a) p = 1
and (b) p = 9 normal modes defined by Eq. (5) for the oscilla-
tion frequency ωτ = 0.05 and period T = 2π/ω = 125.66 τ . The
strain amplitudes from top to bottom are γ0 = 0.02,0.03,0.04,0.05,

0.06,0.07,0.08, and 0.09.

self-correlation function, which is defined as follows:

Qs(a,t) = 1

Nm

Nm∑
i=1

exp

(
−	ri(t)2

2 a2

)
, (6)

where 	ri(t) = ri(t0 + t) − ri(t0) is the displacement vector
of the ith monomer during the time interval t , Nm is the
total number of monomers, and a is the probed length
scale [35]. Furthermore, it was previously shown that the
dynamical heterogeneity can be quantified via the variance of
the self-correlation function, or the dynamical susceptibility,
which is given by

χ4(a,t) = Nm [〈Qs(a,t)2〉 − 〈Qs(a,t)〉2], (7)

where the averaging is performed over all initial times [36].
An example of the correlation functions Qs(a,t) and χ4(a,t)
is presented in Fig. 4 for the strain amplitude γ0 = 0.06.
The contour plots clearly show that during the reported time
interval the structural relaxation occurs on the length scale of
about the cage size, and the dynamical susceptibility χ4(a,t)
reaches a maximum at intermediate length and time scales, thus
providing an estimate for a number of monomers involved in
a correlated motion.

To gain further insight into the relaxation process, we fix the
probed length scale to a value slightly larger than the cage size,
i.e., a = 0.12 σ , and plot the self-correlation function Qs(a,t)
versus time in Fig. 5 for different strain amplitudes. It is clearly
observed that the structural relaxation occurs faster at larger
strain amplitudes. In particular, at small strain amplitudes,
γ0 ≤ 0.02, the monomers remain trapped inside their cages,
indicating that the system dynamics is nearly reversible during
the reported time interval; while for γ0 ≥ 0.07, the system
becomes fully relaxed after about 100 cycles. Similar to the
behavior of the autocorrelation function of normal modes
shown in Fig. 3, the transition from slow to fast dynamics
occurs at the same strain amplitude γ0 ≈ 0.06. Also, the
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FIG. 4. (Color online) The contour plots of the correlation func-
tions Qs(a,t) (top) and χ4(a,t) (bottom) for the strain amplitude
γ0 = 0.06 and oscillation frequency ωτ = 0.05. The oscillation
period is T = 125.66 τ .

results in Fig. 5 are consistent with the time dependence of
the mean-square displacement curves reported in Fig. 2.

While analyzing the dynamical susceptibility at different
strain amplitudes, we found that for each γ0 the location
of the maximum of χ4(a,t) depends both on a and t . In
Fig. 6, the dynamical susceptibility is shown as function of
time for the values of the parameter a at which χ4(a,t) has
a global maximum at a given strain amplitude. It is apparent
that with increasing strain amplitude, the position of the peak
in χ4(a,t) is shifted to smaller times. The amplitude of the
peak, which reflects the typical number of monomers involved
in a correlated motion, has a pronounced maximum at the
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FIG. 5. (Color online) The time dependence of the self-
correlation function Qs(a,t) computed at a = 0.12 σ for
the oscillation frequency ωτ = 0.05 and period T = 2π/ω =
125.66 τ . The strain amplitudes from top to bottom are γ0 =
0.02,0.03,0.04,0.05,0.06,0.07,0.08, and 0.09.
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FIG. 6. (Color online) The dynamic susceptibility χ4(a,t) de-
fined by Eq. (7) for the oscillation frequency ωτ = 0.05 and period
T = 2π/ω = 125.66 τ . The strain amplitudes from bottom to top are
γ0 = 0.02 at a = 0.06 σ , γ0 = 0.03 at a = 0.06 σ , γ0 = 0.04 at a =
0.07 σ , γ0 = 0.05 at a = 0.08 σ , γ0 = 0.06 at a = 0.21 σ . The other
curves correspond to γ0 = 0.07 at a = 0.20 σ (dashed curve), γ0 =
0.08 at a = 0.17 σ (dash-dotted curve), and γ0 = 0.09 at a = 0.19 σ

(dash-double-dotted curve). The inset shows the dynamic correlation
length ξ4 = [χmax

4 (a,t)]1/3 as a function of the strain amplitude γ0.

strain amplitude γ0 = 0.06. Notice also that at larger strain
amplitudes, γ0 = 0.08 and 0.09, the maximum of χ4(a,t)
occurs after the first cycle.

Assuming that correlated regions are relatively compact,
the dynamic correlation length ξ4 can be simply estimated
from the peak value of the dynamical susceptibility, i.e., ξ4 =
[χmax

4 (a,t)]1/3. Taking the maximum of the curves in Fig. 6, the
variation of the correlation length ξ4 as a function of the strain
amplitude is presented in the inset of Fig. 6. Interestingly,
the correlation length exhibits a distinct maximum at the
critical strain amplitude γ0 = 0.06. These results reveal that
the transition from slow to fast relaxation dynamics reported
in Figs. 2, 3, and 5 is accompanied by the largest number of
dynamically correlated monomers.

We emphasize that a qualitatively similar behavior of the
dynamic correlation length was observed in the previous study
on cyclic deformation of a binary Lennard-Jones glass [21].
In that study, however, the maximum of the dynamical
susceptibility χ4(a,t) was computed at the same value of
the parameter a = 0.12 σ for all strain amplitudes, and the
estimate of the dynamic correlation length was reported up to
a strain amplitude at which the number of particles involved
in a correlated motion is maximum [21]. In general, the initial
growth of the dynamic correlation length with increasing strain
amplitude during oscillatory deformation is in marked contrast
to the situation in glassy materials under steady shear, where
the relaxation dynamics becomes more homogeneous with
increasing shear rate [37,38]. On the other hand, our results
are consistent with the conclusions of the previous study by
Riggleman et al. [16], who found that at a constant strain
rate deformation of polymer glasses, the relaxation dynamics
is strongly heterogeneous below the yield strain, and after
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the onset of flow, the dynamics becomes significantly more
homogeneous.

We now turn to a discussion of the monomer hopping
dynamics and the formation of transient clusters of mobile
monomers. Under cyclic loading, the motion of a monomer
involves thermal vibration within the cage formed by its
neighbors and rapid hopping from one cage to another. The
cage jumps can be identified by a numerical algorithm that
was originally introduced by Candelier et al. [19]. This
method, called the iterative barycenters separation, computes
the effective distance between two consecutive segments of a
monomer trajectory. If this distance is larger than the typical
cage size then the trajectory is divided into two subsets. Using
the iterative procedure, the trajectory of each monomer can
be decomposed into consecutive segments where the displace-
ment of a monomer is localized within cages formed by its
neighbors [19]. This algorithm was used to locate cage jumps
in two-dimensional granular systems [19,39] and supercooled
liquids [40]. More recently, the cage decomposition algorithm
was implemented to identify cage jumps “on-the-fly” during
the simulation run, thus eliminating the need to store multiple
particle configurations [9].

In this work, the monomer trajectories were stored and
analyzed following the cage decomposition method proposed
by Candelier et al. [19]. Similar to the implementation of
the algorithm used in our previous study [21], we first take
a part of the monomer trajectory, cut it in two adjacent
segments, and then compute the effective distance between
them. If this distance is less than the cage size rc = 0.1 σ for
any two adjacent segments within the subtrajectory, then we
conclude that the monomer remained within the cage. Using
this brute-force procedure, we examined all time intervals
10 T ≤ �ta ≤ 100 T for all monomer trajectories. We found
that cage jumps typically occur during several cycles, and they
can be either reversible, when a monomer jumps back to its
previous cage, or irreversible otherwise.

The total number of mobile monomers is plotted as
a function of time in Fig. 7 for the strain amplitudes
γ0 = 0.02,0.04, and 0.06. As is evident, in each case the
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FIG. 7. The total number of mobile monomers during cyclic de-
formation with frequency ωτ = 0.05, period T = 2π/ω = 125.66 τ ,
and strain amplitudes (a) γ0 = 0.02, (b) γ0 = 0.04, and (c) γ0 = 0.06.
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FIG. 8. (Color online) Snapshots of mobile monomer configura-
tions at strain amplitudes (a) γ0 = 0.03, (b) γ0 = 0.04, (c) γ0 = 0.05,
and (d) γ0 = 0.06.

relaxation dynamics is characterized by sudden bursts in
mobility separated by periods of quiescence. Note that at the
strain amplitude γ0 = 0.02, mobile monomers mostly undergo
reversible jumps without any net displacement (see Fig. 2),
while at γ0 = 0.06, the amplitude of bursts is about half of
the total number of monomers in the system. Moreover, a
visual inspection of snapshots indicates that mobile monomers
tend to form clusters. Examples of instantaneous monomer
positions during intermittent bursts are shown in Fig. 8 for
different strain amplitudes. It can be seen that the clusters have
a relatively compact structure, although several monomers
appear to be isolated. Notice the formation of a large cluster
at γ0 = 0.06 that spans the whole system. As the cyclic
deformation continues, the number of mobile monomers in
a large cluster decreases typically to a few monomers that
undergo reversible jumps until the emergence of the next
cluster. Thus, the spatiotemporal clusterization algorithm [19]
would identify only several large-size clusters, rendering their
statistics unreliable.

A number of previous studies have explored the effect of
dynamic facilitation in glassy materials and concluded that a
particle has a higher probability to become mobile if it has a
neighboring particle that was previously mobile [21,39,41,42].
Here, we analyzed a trajectory of each monomer, using the
cage decomposition algorithm described above, and identified
cage jumps and time intervals when a monomer remained
within the cage. If a monomer escaped its cage and had at least
one nearest neighbor that was mobile sometime during the
time interval 	 t preceding the cage jump, then this hop event
was considered to be facilitated by the neighbors. The ratio of
dynamically facilitated mobile monomers and the total number
of mobile monomers is plotted in Fig. 9 as a function of the time
interval preceding cage jumps. It can be observed that the ratio
Nf /Ntot increases rapidly and appears to saturate after about
2000 cycles. With increasing strain amplitude, the fraction
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FIG. 9. (Color online) The ratio of dynamically facilitated mo-
bile monomers and the total number of mobile monomers as
a function of the time interval preceding cage jumps. The os-
cillation frequency is ωτ = 0.05 and strain amplitudes are γ0 =
0.02,0.03,0.04,0.05, and 0.06 (from bottom to top).

of dynamically facilitated mobile monomers increases. It is
perhaps not surprising that the ratio is nearly one for γ0 = 0.06
because most of the monomers undergo cage jumps during the
time interval 104 T and thus influence the hopping of their
neighbors. The fact that the ratio is about 0.6 for the strain
amplitude γ0 = 0.02, at which the self-correlation function
remains nearly constant (see Fig. 5), suggests that reversible
cage jumps are either spatially isolated or clustered in small
groups at the same locations during the reported time interval.

IV. CONCLUSION

In summary, molecular dynamics simulations were car-
ried out to investigate structural relaxation and dynamical
heterogeneity in a model polymer glass under oscillatory

shear strain. We used a standard bead-spring representation
of linear polymer chains below the entanglement regime. To
probe the microscopic relaxation dynamics, we examined the
mean-square displacement of monomers, the autocorrelation
function of normal modes, as well as the self-overlap order
parameter and dynamical susceptibility.

It was found that the segmental mobility is unaffected by the
time-periodic deformation at small strain amplitudes, whereas
the relaxation time of polymer chains becomes less than about
a hundred oscillation periods at strain amplitudes above a
few percent. By computing the peak value of the dynamical
susceptibility, we estimated the dynamical correlation length
that was found to exhibit a distinct maximum at the critical
strain amplitude. Therefore, it was concluded that the transition
from slow to fast relaxation dynamics is associated with the
largest number of monomers involved in the correlated motion.

The postprocessing analysis of all monomer trajectories,
based on the cage decomposition algorithm [19], indicated that
mobile monomers tend to aggregate into transient clusters. It
was observed that the typical cluster size during intermittent
bursts increases at larger strain amplitudes, which is in
agreement with findings of the previous study on cyclic loading
of a binary Lennard-Jones glass [21]. The effect of dynamic
facilitation of mobile monomers by their neighbors becomes
more pronounced with increasing strain amplitude.

In the future, it would be instructive to perform a finite-size
scaling analysis of the dynamic correlation length in the
vicinity of the critical strain amplitude and to explore the
influence of oscillation frequency on the structural relaxation
dynamics in polymer glasses.
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