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A B S T R A C T

The role of porous structure and glass density in the response behavior to compressive deformation of amor-
phous materials is investigated via molecular dynamics simulations. The disordered, porous structures were
prepared by quenching a high-temperature binary mixture below the glass transition point into the phase co-
existence region. With decreasing average glass density, the pore morphology in quiescent samples varies from a
random distribution of compact voids to complex pore networks embedded in a continuous glass phase. We find
that during compressive loading at constant volume, the porous structure is linearly transformed in the elastic
regime and the elastic modulus follows a power-law increase as a function of the average glass density. Upon
further compression, pores deform significantly and coalesce into large voids leading to formation of domains
with nearly homogeneous glass phase, which provides an enhanced resistance to deformation at high strain.

1. Introduction

The prediction of the mechanical response of disordered solids is
important for a number of industrial applications, and, at the same
time, it poses a challenging fundamental problem [1,2]. It is well re-
cognized by now that deformation and flow of bulk metallic glasses
occur through rapid, localized rearrangements of atoms that induce
strongly anisotropic stress redistribution over long distances [3,4]. At
the mesoscopic level, this process can be described by elastoplastic
models, where the system is coarse-grained into interacting elements
that obey a set of rules including linear elastic response, local yield
criterion, stress propagation, and recovery [1]. Interestingly, atomistic
simulations revealed that both the yield and flow stresses of metallic
glasses [5] and nanocrystalline metals [6] are higher in compression
than in tension. More recently, it was shown that several factors affect
deformation and failure of cellular metallic glasses under compression;
namely, the cell size controls the transition from localized to homo-
geneous plastic deformation, while the cell shape, e.g., circular versus
hexagonal, might change the strength and energy absorption capacity
due to variation in stress concentration at the cell surface [7]. Never-
theless, a complete understanding of the elastic response and yield in
homogeneous and porous metallic glasses is yet to be achieved.

A number of recent experimental studies have reported the results of
uniaxial compression tests performed on metallic glass pillars [8-14].

Most importantly, it was found that when the sample size is decreased
down to the submicron dimensions, the deformation mode changes
from shear band propagation to homogeneous plastic flow, which can
be attributed to the existence of a critical strained volume required for
the formation of a shear band [9]. The observed behavior can be ra-
tionalized by realizing that collectivity of flow defects, or shear trans-
formation zones, toward localization is suppressed in sufficiently small
systems, and the enhanced ductility corresponds to a large number of
weakly correlated shear transformations [8]. It was also shown that
during compression of micron-scale amorphous silica pillars, the plastic
deformation is accompanied with a periodic array of radial cracks at the
top of the pillars, which results in some case in splitting into two parts
upon unloading [15]. However, despite significant efforts, the corre-
lation between ductility, fracture, and strength of amorphous materials
as well as the dependence on preparation history and loading condi-
tions remain not fully understood to date.

The microscopic mechanisms of the glass-gas phase separation ki-
netics at constant volume were recently studied using molecular dy-
namics simulations [16,17]. Following a rapid quench below the glass
transition temperature, a simple glass-forming system was found to
gradually transform into an amorphous solid with a porous structure
whose properties depend strongly on the average glass density and
temperature [16,17]. Interestingly, it was shown that the pore-size
distribution functions obey a single scaling relation at small length
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scales for systems with high porosity, while the local density of the solid
phase remains relatively insensitive to the total pore volume [18]. Later
studies have examined the dynamic response of porous glasses

subjected to either steady shear [19] or tensile [20] deformation. In
both cases it was found that the porous structure becomes significantly
modified due to pore redistribution and coalescence into large voids
upon increasing strain [19,20]. The analysis of local density profiles
during tensile loading showed that necking develops in the low-density
regions leading to an extended plastic strain and ultimate breaking of
the material [20].

In our recent study [19], we discussed the theoretical models, de-
veloped to describe the elastic moduli of porous materials and com-
pared our simulation results on shear deformation of porous glasses
with analytical predictions. We found that the simulated modulus de-
pendence on density cannot be described using a single theory. How-
ever, the data can be fitted in the limits of low and high porosities using
different approaches (see [19] and references therein). In the limit of
large porosities, the percolation theory was found to adequately de-
scribe the simulation data. In the limit of low porosity, a model, based
on the Eshelby approach to the problem of embedded inclusions, can be
utilized. The general conclusion of the study [19] is that elastic re-
sponse properties of porous materials are strongly dependent on the
particular realization of pore-size distribution and topology of pore
network in the sample. Recently, similar conclusions were reached by
the authors of Ref. [21], who pointed out the existing differences be-
tween materials with isolated pores and those having more complicated
topology of porous structures.

In this study, we examine the evolution of porous structure and
mechanical response of amorphous solids subjected to compressive
loading using molecular dynamics simulations. It will be shown that

Fig. 1. The representative snapshots of the porous samples with N=300,000 atoms at the temperature T=0.05 ε/kB for the average glass densities (a) ρσ3= 0.2, (b)
ρσ3= 0.4, (c) ρσ3= 0.6, and (d) ρσ3= 0.8. Different atom types are denoted by blue and red circles. Note that atoms are not depicted to scale.
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Fig. 2. The strain dependence of stress σxx (in units of εσ−3) during compres-
sion (εxx<0) and extension (εxx>0) with the strain rate = − −ε τ̇ 10xx

4 1. The
average glass densities are ρσ3= 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0
(from bottom to top along the vertical dotted line). The elastic modulus, E (in
units of εσ−3) as a function of ρσ−3 is shown in the inset. The dashed line is
plotted for reference.
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after an isochoric quench to a temperature below the glass transition, a
variety of pore morphologies are formed, including a random dis-
tribution of isolated voids or a connected porous network, upon redu-
cing the average glass density. We demonstrate that under compressive
loading, the porous structure is gradually transformed via pore coa-
lescence and void redistribution in the system, which results in nearly
uniform density profiles at high strain.

The paper is organized as follows. The next section contains the
details of molecular dynamics simulation model and the deformation
procedure. Results of the numerical analysis of pore size distributions,
local density profiles, and mechanical properties of porous glasses are
presented in Section 3. The conclusions are given in the last section.

2. Simulation details

In this study, the deformation and structure of porous glassy systems
were investigated using the Kob-Andersen (KA) binary mixture (80:20)
model at a low temperature [22]. In the KA model, the pairwise in-
teraction between atoms α,β=A,B is described via the truncated Len-
nard-Jones (LJ) potential
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with the non-additive interaction parameters εAA=1.0, εAB=1.5,
εBB=0.5, σAB=0.8, and σBB=0.88 [22]. The mass of atoms of types A
and B is the same, i.e., mA=mB. The cutoff radius is taken to be rc,
αβ=2.5 σαβ to improve computational efficiency. The reduced units of

length, mass, energy, and time are defined as follows σ= σAA, m=mA,
ε= εAA, and =τ σ m ε/ , respectively. The Newton's equations of mo-
tion were integrated using the velocity-Verlet algorithm [23,24] with
the time step △tMD=0.005 τ. The total number of atoms is
N=300,000. All molecular dynamics simulations were performed
using the LAMMPS numerical code, which is designed to run efficiently
in parallel using the domain-decomposition method [23].

Following the preparation protocol used in the previous studies [16-
20], the system was first equilibrated at constant volume during
3×104 τ. At this stage, the temperature of 1.5 ε/kB, where kB is the
Boltzmann constant, was maintained by velocity rescaling. At this
temperature the binary mixture is in the liquid phase. To remind, the
glass transition temperature of the KA model is Tg ≈ 0.435 ε/kB [22].
The second step involves an instantaneous quench of the system to the
target temperature of 0.05 ε/kB and subsequent evolution of the system
during an additional time interval of 104 τ at constant volume. As a
result of concurrent phase separation and solidification at the low
temperature, an amorphous solid with a complex porous structure is
formed, as shown, for example, in Fig. 1 for the average glass densities
ρσ3= 0.2, 0.4, 0.6 and 0.8. In the present study, the MD simulations
were carried out in a wide range of average glass densities, 0.2≤ ρσ3 ≤
1.0, and five independent samples.

The compression deformation was conducted on porous glasses
along the ̂x direction with the strain rate = − −ε τ̇ 10xx

4 1 at constant
volume. The maximum compressive strain is 80%, which means that
the cell size in the ̂x direction is reduced from Lx to 0.2 Lx at the
maximum strain. As in quiescent samples, the temperature of 0.05 ε/kB

Fig. 3. The snapshots of atomic configurations for the average glass density ρσ3= 0.3 and strain (a) εxx=0.05, (b) εxx=0.25, (c) εxx=0.45, and (d) εxx=0.80. The
sample is compressed at constant volume with the strain rate = − −ε τ̇ 10xx

4 1.
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was maintained via the Nosé-Hoover thermostat [23]. During com-
pressive deformation, the stress tensor, potential energy, and system
size were saved every 0.5 τ for the postprocessing analysis, which was
supplemented by visual examination of consecutive atomic configura-
tions. The data for the elastic modulus were averaged over five in-
dependent realizations of disorder, while representative snapshots and
locally averaged density profiles as well as pore size distributions are
reported for one sample at a given average glass density.

3. Results

The process of phase separation and concurrent solidification of a
glass-forming fluid at constant volume lead to formation of complex
porous structures in an amorphous solid [16,17]. With increasing
average glass density, a number of distinct morphologies were reported
at temperatures below the glass transition; namely, disconnected dro-
plets of the dense phase, bicontinuous structures with increasing frac-
tion of the solid phase, and randomly distributed isolated pores inside
the amorphous solid [16,17]. Typical atomic configurations of quies-
cent glassy systems considered in the present study are shown in Fig. 1
for the average glass densities ρσ3= 0.2, 0.4, 0.6 and 0.8. Note that
pore connectivity increases in samples with lower average glass den-
sities, while the structure of the solid domains remains continuous. In
our previous study, it was demonstrated that the distribution of pore
sizes in the absence of deformation is well described by a scaling re-
lation at small length scales and below the average glass density

≲ρσ 0.83 [18].
Fig. 2 shows the stress-strain curves measured in one sample for

each value of the average glass density ρσ3 ∈ [0.2,1.0]. For complete-
ness, the data for both compression (εxx<0) and tension (εxx>0)
deformations are reported. Notably, the zero strain values of stress σxx
are finite due to the negative pressure, which arises as a result of
thermal quench to the low temperature of 0.05 ε/kB at constant volume
[18,20]. Notice that the elastic range extends up to ≲ε| | 0.04xx , which is
followed by the plastic regime of deformation until the maximum strain
|εxx|= 0.8. The elastic modulus was computed from the slope of
compressive stress σxx(εxx) at ⩽ε| | 0.01xx and averaged over five in-
dependent samples. In agreement with our previous studies [18,20], the
variation of the elastic modulus as a function of the average glass
density follows a power-law increase with the exponent of 2.41 (see
inset to Fig. 2). Under compressive loading, the stress is first reduced to
zero and then becomes negative, which indicates that a nearly homo-
geneous glass phase is accumulated in some parts of highly strained
samples, thus, providing resistance to deformation. This effect is illu-
strated in consecutive systems snapshots taken upon increasing strain
(see Figs. 3—5). In turn, the pore deformation morphologies are more
clearly visualized in narrow slices across the systems shown in
Figs. 6—8 for the average glass densities ρσ3= 0.3, 0.5 and 0.8.

In this work, the pore size distribution (PSD) functions are obtained
using the open-source software ZEO++ [25-27]. The approach is
based upon a Voronoi network representation of the accessible void
space. Specifically, Voronoi network consists of nodes and edges map-
ping the space around atoms in the system. Each node and edge contain
information on the distances to the nearest atoms; the distances cor-
respond to the radii of the largest probe of a spherical shape that can
move along the edge without intersecting any atom. The probe-

Fig. 4. Four snapshots of the deformed porous glass with the average density ρσ3= 0.5 and strain (a) εxx=0.05, (b) εxx=0.25, (c) εxx=0.45, and (d) εxx=0.80.
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accessible regions are found via the modified Dijkstra shortest-path
algorithm [28]. Within this framework, the probe-accessible regions of
the periodic Voronoi network are represented by a sub-graph. Thereby,
an atomic structure can be converted into a periodic graph-re-
presentation of the void space for a given radius of the probe.

The pore size distribution functions, Φ(dp), are shown in Fig. 9.
Here, we present our results for the cases of average densities ρσ3= 0.3,
0.5 and 0.8. The PSD functions in quiescent samples for the same set of
ρσ3 values have been studied in Ref. [18]. It was shown that PSDs are
narrow at high glass densities and they become broader as the average
glass density decreases; various features of PSDs were discussed in the
same reference. In the past, we have also investigated evolutions of
PSDs in porous glasses undergoing shear [19] and tensile [20] loadings.
This allows for a comparative analysis of the data, obtained on different
types of mechanical loading.

First, we found that the general behavior of the PSDs under com-
pression is similar to the cases of shearing and tension at small and
intermediate strain deformation. Indeed, when strain is small, the shape
of PSD curves shown in Fig. 9 remains largely unaffected, and the
widening of the PSDs is small. With increasing strain, the PSDs widen
significantly and gradually start to develop a double-peak profile. The
same type of behavior has been observed in the systems undergoing
structural evolution under shear and tension [19,20]. In the cases under
consideration, the magnitudes of PSDs decrease drastically with strain

in the regions of small values of dp. At the same time, the magnitudes of
peaks, newly developed at large values of dp, increase (see Fig. 9). This
is consistent with the results reported for porous glasses under shear
and tension [19,20]. However, compression above the threshold value
of ≈ 0.7 leads to a nearly complete separation of the porous glass into
solid domain and void space. At densities ρσ3= 0.3 and 0.5, the se-
paration leads to a formation of the void space region with linear di-
mension exceeding that of a half of the system size in the direction
perpendicular to the loading axis. According to our analysis, a sub-
stantial densification takes place in the solid domains, with the max-
imum of the density profile along the ŷ direction being more than twice
the average density of the system (not shown).

Second, previously we found that, in the case of tension, the system
with density ρσ3= 0.8 shows anomalously large peak, corresponding to
large-size pore developed in the system [20]. Here, again, the same type
of behavior is observed. The system undergoes a rapid separation into
high-density solid material (glass) and large voids. Note that the finite-
size effects may interfere with the process of void growth, when a pore
diameter becomes close to the system's characteristic dimension.
Therefore, one should exercise some caution in interpreting the data,
when dimensions of the pores approach those of the simulation box.
The growth of large-size voids is accompanied by significant decrease in
the number of pores having dimension characteristic for unperturbed
samples. Indeed, the small-size pores nearly disappear, when εxx

Fig. 5. Snapshot images of the system configurations at strains (a) εxx=0.05, (b) εxx=0.25, (c) εxx=0.45, and (d) εxx=0.80. The average glass density is ρσ3= 0.8
and the strain rate is = − −ε τ̇ 10xx

4 1.
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exceeds 0.5 in the system with ρσ3= 0.8 as shown in Fig. 9. Altogether,
the general conclusions are similar to the cases of shearing and tension
[19,20]. Those can be summarized as follows. Compressive deformation
leads to multiple structural transitions, characterized by gradual evo-
lution from a number of small-size compact pores to a configuration
with one or two dominant pores.

A temporal picture of material rearrangement under compression
can be unveiled by considering spatially-resolved (coarse-grained)
density profiles at a chosen set of compressive strain magnitudes.
Similar to our study of porous glass response to tension [20], here we
consider spatially-resolved average density, computed along the direc-
tion of compressive loading, ⟨ρ⟩s(x). The quantity is defined as the
number of atoms located in a bin with thickness b ≈ σ along the ̂x
direction (the direction of the loading), divided by the volume of the
bin: bLyLz, where, Ly and Lz are the box sizes in the two Cartesian di-
rections perpendicular to the loading direction. In Ref. [20], we found
that the failure under tension occurs in large-scale regions of low-
density. In other words, the location of the failure is correlated to the
low-density regions of large spatial extents [20].

As shown below, in the case of compressive loading, there also ex-
ists a number of notable events that pertained to the structural evolu-
tion. Correspondingly, in Figs. 10—12, we mark the low-density regions

by dashed vertical lines. As follows from Figs. 10—12, two different
types of behavior can be discriminated depending on the average
density of porous glasses. Next, we consider the two types separately. In
the low- and intermediate-density systems (ρσ3= 0.3 and 0.5), the
compression induces a densification of the regions with initially low
local densities, while the density shows some decrease in the domains,
where ρσ3 was above the average value before loading. In a sense, the
effect can be described as a gradual rearrangement of the glassy ma-
terial, such that the local density along the direction of compression is
homogeneous and equals to the average density. This behavior is
characteristic for small and intermediate values of compressive strains.
As the strain magnitude approaches εxx=0.7, an abrupt homogeniza-
tion occurs, with the average density rapidly approaching the average
value, i.e., ρσ3= 0.3 and 0.5 (see Figs. 10 and 11).

The behavior is markedly different for systems with ρσ3= 0.8
shown in Fig. 12. In this case, the zone of low-density (marked by
vertical dashed lines) does not undergo densification. To the contrary, a
density dip develops within the zone, moves towards one border of the
low-density zone and gets localized at this border at intermediate va-
lues of εxx. At high strain magnitudes, an apparent pore closure takes
place in the whole sample, the density is close to homogeneous, and its
value approaches the average density, ρσ3= 0.8. We would like to

Fig. 6. Reduced sets of data within a slice of thickness 10 σ illustrate evolution of the porous structure in the sample with the average glass density ρσ3= 0.3 and
strain (a) εxx=0.05, (b) εxx=0.25, (c) εxx=0.45, and (d) εxx=0.80. The same sample as in Fig. 3.
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reiterate that the porous glasses in our study were formed in confined
environment. Correspondingly, we perform the compressive loading
tests at constant volume. Therefore, the systems are different from the
seemingly equivalent set-ups, widely used in the studies of shock-wave
propagation through porous media. In the case of shock-wave propa-
gation, a density increase in the after-shock regions takes place, with
the shocked material density being in excess of its thermodynamic
equilibrium value [29-32]. In the case, considered herein, we rather
observe a nearly complete separation of bimodal systems in solid do-
mains and void, with density of these solid domains gradually ap-
proaching its equilibrium value for the void-free state
(ρσ3= 1.25 [33]). Since the volume is conserved (unlike the case of
shock-compression), the average density approaches its corresponding
value throughout the samples. The systems we consider can be of re-
levance to the problems related to gas absorption or flow of gas (fluid)
in nano-porous materials, where stresses can arise, for example, from
adsorbates [34]. The problem of shock-waves in the system under
consideration will be addressed in a future work.

4. Conclusions

In summary, we reported the results of a molecular dynamics study
aimed at understanding the influence of pore and glass structures on
compressive loading at constant volume and low temperature. For a given
average glass density, the porous samples were produced at constant vo-
lume through kinetically arrested solid-gas spinodal decomposition of a
glass-forming system at a temperature well below the glass transition. The
resulting structures are characterized by a connected porous network at
lower average glass densities and a collection of randomly distributed
compact pores at higher average glass densities. In addition, in a wide
range of average glass densities, the pressure in quiescent samples is ne-
gative due to a distribution of built-in tensile stresses in the solid domains.
We found that upon compressive loading, the axial stress is first reduced to
zero, thus releasing built-in stresses in the system, and then it becomes
negative due to accumulation of the homogeneous glass at high strain. In
agreement with our previous results on tensile and shear deformation, the
compressive elastic modulus increases as a power-law function of the
average glass density. Finally, the numerical analysis of density profiles
and pore size distributions during compressive loading showed that porous

Fig. 7. Atom configurations in a thin slice of 10 σ for the average density ρσ3= 0.5 and strain (a) εxx=0.05, (b) εxx=0.25, (c) εxx=0.45, and (d) εxx=0.80. The
same sample as in Fig. 4.
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Fig. 8. A series of snapshots of atom positions within a narrow bin with thickness of 10 σ for ρσ3= 0.8 and strain (a) εxx=0.05, (b) εxx=0.25, (c) εxx=0.45, and (d)
εxx=0.80. The same sample as the one presented in Fig. 5.
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structures undergo significant deformation and expulsion from the glass
phase leading to effective separation of empty regions from the homo-
geneous solid domains.
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Fig. 12. The density profiles ⟨ρ⟩s(x) (in units of σ−3) of the solid phase for
ρσ3= 0.8 and selected values of compressive strain. The colors and strain va-
lues are the same as in Fig. 10.
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Fig. 11. Spatially-resolved density profiles ⟨ρ⟩s(x) (in units of σ−3) for the same
values of compressive strain as in Fig. 10. The average glass density ρσ3= 0.5 is
shown by the horizontal line. The same colorcode as in Fig. 10.
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