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Cluster Monte Carlo simulations of the nematic-isotropic transition
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~Received 4 August 2000; published 18 May 2001!

We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-
isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and
Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and
greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for
systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system
size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.
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The Lebwohl-Lasher~LL ! model@1# is a lattice model of
rotors with an orientational order-disorder transition. Wh
it neglects the coupling between the orientational and tra
lational degrees of freedom present in a real nematic liq
crystal, it is generally believed that this coupling does n
play a significant role at the nematic-isotropic~NI! transition.
With the absence of translational degrees of freedom the
model is particularly well suited for large-scale simulatio
of the transition. The model is defined by the Hamiltonia

H52e(̂
i j &

H 3

2
~si•sj !

22
1

2J ~1!

where the sum is over all nearest neighbors ande is a cou-
pling parameter. The long axes of the rotors are specified
unit vectorssi . The LL model has been intensively inves
gated using Monte Carlo techniques since its introduct
@2–7#.

As in real experimental systems the NI transition in t
LL model is weakly first order; thus, there is significant cri
cal slowing down in the neighborhood of the transition. In
Monte Carlo simulation the system gets trapped in one of
free energy wells corresponding to the nematic or isotro
phase, and the conventional single flip Metropolis algorit
becomes inefficient especially as the system size is
creased. While Boschiet al. @7# carried out simulations on
systems as large as 12031203120, the most detailed stud
of the NI transition was carried out by Zhanget al. @6# on
systems up to 28328328. These authors used the Le
Kosterlitz finite size scaling method@8,9# supplemented by
the Ferrenberg-Swendsen reweighting technique@10# to de-
termine the order of the NI transition and estimate the va
of the transition temperatureTc in the thermodynamic limit.
In the Lee-Kosterlitz method one examines the finite s
scaling of the free energy barrierDF between the nematic
and isotropic phases; at a first-order transition this should
an increasing function of the linear system sizeL, while it
should approach a constant for systems with continu
phase transitions. For a large enough system, specificalL
@j, wherej is the correlation length, a finite size scalin
analysis predicts thatDF;L2 for three-dimensional systems
In the LL model Zhanget al. found a small free energy bar
rier appearing at the two largest system sizes they stud
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L524 and 28, and thus did not have enough data to carry
a finite size scaling analysis ofDF. Instead they estimated
the value ofTc in the thermodynamic limit by extrapolatin
three different measures ofTc : the positions of the maxima
in the specific heat and susceptibility and the tempera
where the two free energy wells are of equal depth. Ho
ever, as we demonstrate below, the system sizes consid
by Zhanget al. are not in the finite size scaling regime, an
thus their estimate ofTc in the thermodynamic limit is not
accurate.

Over the past decade significant advances have been m
in development of algorithms that overcome critical slowi
down in magnetic spin systems@11#. In particular, single
cluster algorithms have proven to be very efficient in sim
lating the three-dimensional Ising,XY, and Heisenberg mod
els. These algorithms are nonlocal updating methods whe
single cluster of spins is constructed and the spins within
cluster are updated simultaneously. In the Ising case@12#
clusters of spins are formed by creating bonds between
allel spins with a probability that guarantees detailed b
ance. For models with continuous symmetry Wolff@13# in-
troduced a cluster algorithm where ‘‘parallel spins’’ refers
spins that point to the same hemisphere. A hemispher
defined by an equatorial plane perpendicular to a rando
chosen directionr̂ . Nematic liquid crystals differ in an im-
portant symmetry aspect from magnetic systems, nam
‘‘up’’ and ‘‘down’’ spins are equivalent. To construct a clus
ter algorithm suitable for simulating the LL model the Wol
algorithm must be modified to account for this symme
difference. The necessary modification was done by Ku
and Zumbach@14#, and used by them to study the two
dimensional LL model. Here we use their algorithm, alo
with the Lee-Kosterlitz finite size scaling method, to stu
the first-order transition in the three-dimensional LL mod

Following Kunz and Zumbach, we randomly choose
direction r̂ . Then we reflect any molecular long axes f
which si• r̂,0, by the transformations→2s; note that the
Hamiltonian H is invariant under this operation. Next w
choose a sitei at random and reflect it,si85R( r̂ )si using the

reflection operatorR( r̂ ) defined by

R~ r̂ !si52si12~si• r̂ ! r̂ . ~2!
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 062702
This operation is illustrated in Fig. 1~a!. Unlike the original
Wolff reflection operation, which reflects spins from th
original hemisphere to the opposite one, the present re
tion operator keeps the molecular orientation vectors in
same hemisphere defined byr̂ . Next we form bonds with the
nearest neighbors ofsi8 with probability

Pi j 512exp$min@0,b~si8•sj !
22b„si8•@R~ r̂ !sj #…

2#%

512exp$min@0,4b~si8• r̂ !~sj• r̂ !~~si8•sj !2~si8• r̂ !

3~sj• r̂ !!#%, ~3!

whereb53e/2kBT. This probability is a modification of the
one introduced by Wolff, replacing the Heisenberg inter
tion 2Jsi•sj by the Lebwohl-Lasher interaction2 3

2 e(si
•sj )

2. As in the original Wolff algorithm we continue thi
process, forming bonds with the nearest neighbors of all
flected molecular orientation vectors until the cluster can
grow any further.

To understand the formation of clusters, consider the p
jection of two molecular orientation vectorssi and one of its
nearest neighborssj on the plane perpendicular tor̂ before
the reflection operation is performed@see Fig. 1~b!#. A bond
between these two molecules will likely form if the anglef
between their projections is less than 90°. Note that the p
ability Eq. ~3! for the bond formation is maximized when th
angle betweensi8 andsj is 90° and each of these molecul

makes an angle of 45° withr̂ . Thus, as in the original Wolff
algorithm, at low temperatures the molecules are nearly
aligned and it is highly probable that a large fraction of
molecules will be flipped at once. On the other hand at h
temperatures the distribution of molecules will be isotrop
resulting in flipping small clusters in random directions.

FIG. 1. ~a! Illustration of the reflection operationR( r̂ ), Eq. ~2!.

The unit vectorr̂ is chosen randomly at the start of the algorith
The reflection operation yields the new molecular orientationsi8

5R( r̂ )si as shown.~b! Illustration of the formation of a cluster o
two molecules. Here we show the projections of the two molecu

long axessi andsj on the plane perpendicular tor̂ , as well as the
projections of the molecular long axes produced by the reflec

operatorR( r̂ ) acting on these two molecules. Two molecules a
likely to form a cluster if they each make an angle of approximat

45° with r̂ and if the anglef between their projections is less tha
90°.
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the intermediate region close to the NI transition temperat
the system flips between isotropic and nematic states.

We have used the cluster algorithm to simulate the
model on a simple cubic lattice of linear dimensionL, 30
<L<70, with periodic boundary conditions, in order
study the properties of the NI transition. The temperaturT
was measured in dimensionless units ofe/kB , in agreement
with the units used in previous studies of this model. O
initial random configurations were equilibrated for at lea
200 000 Monte Carlo steps~MCS! before starting production
runs. We found that the average cluster size at temperat
close to the NI transition is approximately 0.17N sites per
cluster~whereN is the total number of lattice sites!, essen-
tially independent of system size. Approximately half of t
MCS resulted in clusters with fewer than ten sites and w
efficiently simulated with a scalar code. However, a sign
cant fraction of clusters hadN/2 sites or greater, and employ
ing a vectorizable cluster construction method@15# yielded a
sixfold speedup.

For each configuration generated, we calculated the
ergy per site,E5H/N. To ascertain the nature of the pha
transition we proceeded as in Ref.@6# and used the method
of Lee and Kosterlitz@8,9#, which relies on the single histo
gram reweighting technique of Ferrenberg and Swend
@10#. Following the approach of the latter authors we stor
the configuration data in a histogramH(E,T,L). The nor-
malized probability distribution functionP(E,T,L) of the
energy is then given by

P~E,T,L !5
H~E,T,L !

(
E

H~E,T,L !

. ~4!

Given this distribution function at temperatureT, the
Ferrenberg-Swendsen method allows the calculation of t
modynamic quantities at a different temperatureT8 in the
neighborhood ofT. Specifically, thermodynamic quantities
T8 can be calculated using the distribution functio
P(E,T8,L) where

P~E,T8,L !5
H~E,T,L !exp~2DbE!

(
E

H~E,T,L !exp~2DbE!

~5!

and

Db5~1/T821/T!. ~6!

Thus, accurate information over the entire critical region c
be extracted from a small number of simulations.

The Lee-Kosterlitz method utilizes the system size dep
dence of the barrierDF separating the isotropic and nemat
free energy minima at the transition temperature to de
mine the order of the transition. If the barrier grows wi
increasingL then the transition is first order; furthermore,
finite size scaling holds, thenDF;L2 in a three-dimensiona
system. To determine the barrier height we use the fr
energy-like quantity
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F~E,T,L !;2 ln P~E,T,L !, ~7!

which differs from the true free energy by additive quantit
dependent only onT and L that are irrelevant to computa
tions of free energy differences. This free-energy-like qu
tity is shown in Fig. 2 for different system sizes, and we n
the appearance of a pronounced double well structure
sufficiently large system sizes. The right and left hand we
correspond to the nematic and isotropic phases, respecti
In collecting our data we made sure that the system mad
least 100 hops between the two wells for the largest sys
size of 70, for a run of 63106 MCS. For each system size
we performed sufficient MCS such that the typical number
points in one bin of the histogramH is much larger than the
variation in the exponential factor exp(DTL3), where DT
5T82T. This criterion arises from the requirement that t
peak in the reweighted distribution Eq.~5! avoid the
‘‘wings’’ of the measured histogram. Typically we foun
approximately 104 points in each bin and the exponenti
factor varied by about 10.

Zhang et al. @6# made similar plots of the free energ
F(S,T,L) as a function of the nematic order parameteS
rather than the energyE. For the system sizes studied b
these authors, withL<28, the free energy function
F(E,T,L) is a much weaker indicator of the nature of the
transition. However, for the system sizes we have stud
with 30<L<70, the free energy as a function ofE is a very
good indicator as illustrated in Fig. 2. We calculat
F(S,T,L) for L528, the largest system size studied
Zhanget al., to check that our cluster algorithm yields th
same transition temperature they determined using the
ventional single spin flip MC algorithm. In general we d
not calculateF(S,T,L) because this requires calculation of
histogramH(E,S,T,L) dependent onSas well asE in order
to carry out the reweighting. Calculation of this multiple hi
togram with sufficiently good statistics is prohibitively tim
consuming for large systems.

FIG. 2. Free energy, Eq.~7!, in units of e as a function of the
energy per unit siteE ~also measured in units ofe), for four differ-
ent lattice sizes,L530 (d), 50 (n), 60 (s), 70 (*). Thedata
for the three largest system sizes have been displaced verticall
the sake of clarity.
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The barrier heightDF(L) can be computed as follows:

DF~L !5F~Em ,T,L !2F~E1 ,T,L !, ~8!

whereEm is the energy corresponding to the top of the fr
energy barrier andE1 is either one of the degenerate loc
minima. In the finite size scaling regime we would expe
that DF;L2. Our results for the barrier height as a functio
of system size are shown in Fig. 3, where we plotDF/L2

versusL. It is apparent from our plot that even systems w
L570 are not yet in the finite size scaling regime. We ha
estimated the system sizes needed to observe finite size

FIG. 4. The transition temperatureTc(L) ~measured in units of
e/kB) as a function ofL23 ~in units of 531025 inverse cubic lattice
spacings!, for the eight system sizes shown in Fig. 3, showing a
parent finite size scaling behavior~the straight line fit! given by Eq.
~9! for system sizesL>35 ~compare, however, with the behavior o
the free energy barrier shown in Fig. 3!. The extrapolation of this
line to infinite system size yields an estimate for the upper bound
the transition temperature~indicated by the arrow! in the thermody-
namic limit.

for

FIG. 3. The free energy barrier heightDF/L2 ~measured in units
of 1025e divided by the lattice spacing squared! as a function ofL
~measured in units of the lattice spacing!. If finite size scaling were
obeyed,DF/L2 would be independent ofL.
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 062702
ing by fitting our data forDF(L) to the formDF(L)5aL2

1bL1c, where the term proportional toa is the finite size
scaling law and the term proportional tob represents the
leading correction to scaling. We find that the ratiob/a
.30. Thus, to observe finite size scaling, one must havL
@30.

The transition temperatureTc(L) for a particular system
sizeL is given by the value of the temperature where the t
free energy wells have equal depths. Our results forTc(L)
are shown in Fig. 4. From the straight line plotted in t
figure we see that the finite size scaling relation

DT5Tc2Tc~L !.L23 ~9!

appears to work well for systems of sizeL*35. Given the
behavior ofDF(L) shown in Fig. 3, one should view thi
relation with caution. However, we can use this relation
provide an estimate for an upper bound for the transit
temperature from the intersection of the straight line with
Tc(L) axis, yielding Tc51.122560.0001. This value is
lower than that obtained in Ref.@6#, Tc51.123260.0001,
which is not surprising given that smaller system sizes w
studied in the latter work.
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In conclusion, we have used a modification of the sin
cluster Wolff algorithm for nematic systems to efficient
study the NI transition in Lebwohl-Lasher systems. As in t
case of the cluster algorithms developed originally for fer
magnetic models, this algorithm allows us to overcome
critical slowing down associated with conventional sing
flip Monte Carlo simulations. The phase space can then
sampled efficiently near the transition as the system will
readily between the ordered and disordered phases. We
been able to observe a clear free energy barrier separatin
nematic and isotropic phases, and have found that very la
system sizes (L@30) will be needed to observe finite siz
scaling behavior. We have also applied the algorithm
study the behavior of disclination loops in the transition
gion @16# and the efficiency of the algorithm should allo
the study of many other interesting properties of the tran
tion.
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