Motivation

- **Numerical Study of Crossflow Enhanced Microfiltration of Oil-in-Water Emulsions**
 - Tohid Darvishzadeh, Nikolai V. Priezjev, Volodymyr Tarabara

- **Theory and Numerical Method**
 - Solver: FLUENT.
 - Supplemented by: UDF programming (C)
 - 3D-simulations of incompressible Navier-Stokes.
 - Interface tracking: Volume of Fluid (VOF).

- **Results: Effect of Transmembrane Pressure and Shear Rate**
 - Low shear rate and high trans-membrane pressure: Droplet goes through.
 - High shear rate and high trans-membrane pressure: Droplet breaks up.
 - Low shear rate and low trans-membrane pressure: Droplet is rejected.
 - High shear rate and low trans-membrane pressure: Droplet is rejected.

- **Results: Effect of Viscosity Ratio**
 - Critical pressure at zero shear rate is independent of viscosity ratio.
 - Critical pressure increases with viscosity ratio.
 - Highly viscous drops break at lower shear rates.
 - Highest deformation before breakup happens for medium viscosity ratios.

- **Results: Effect of Material Parameters**
 - Drops with high contact angle and high surface tension have higher critical pressure.
 - Drops of high contact angle and low surface tension break more easily.

- **Important Conclusions**
 - Behavior of a single droplet on a pore in crossflow microfiltration is one of the following: Permeation, Rejection, Breakup.
 - Critical pressure for crossflow microfiltration increases with shear rate, viscosity ratio, surface tension coefficient, and drop size.
 - Increasing viscosity ratio, contact angle, and size of the drop increases chance of breakup.
 - Increasing the surface tension coefficient decreases chance of breakup.

- **References**