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Abstract of “Simulations of Nematic Liquid Crystals: Confined Geometries, Phase Transitions and
Topological Defects,” by Nikolai V. Priezjev, Ph.D., Brown University, May 2002

The physics of liquid crystals is an exciting field of research with important practical applications. In
this dissertation we present the results of simulation studies of nematic liquid crystals using Monte
Carlo and molecular dynamic techniques. In our first project we performed Monte Carlo simulations
of the Lebwohl-Lasher (LL) model of nematic liquid crystals confined to cylindrical cavities with
perpendicular anchoring. In this particular geometry one has an interesting interplay between bulk
and surface energies, which results in different director configurations inside the cylinder. Our work
reconciled the apparent contradictions between the results of earlier simulations and approximate
analytic theories. In another project we simulated the nematic—isotropic transition in the LL model
using a single cluster Monte Carlo algorithm. We calculated the finite size scaling of the free energy
barrier at the transition and obtained a reliable estimate of the value of the transition temperature in
the thermodynamic limit for the first time. We also used the cluster algorithm to study the behavior
of disclination loop defects in the vicinity of the nematic—isotropic transition in the LL and related
models. We calculated the distribution of these defects and were able to draw interesting conclusions
about their behavior at the transition, and contrast the behavior with analogous magnetic systems.
In our last project we studied the coarsening dynamics of biaxial nematics using Langevin molec-
ular dynamics. We used a model with no a priori realtionship among the three elastic constants
associated with director deformations. We found a rich variety of coarsening behavior, including
the simulataneous decay of nearly equal populations of the three classes of half—integer disclination
lines. The behavior we observed can be understood on the basis of the relative values of the elastic

constants and the resulting decay channels of the defects.
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Chapter 1

Introduction and Overview

1.1 Liquid Crystal Phases

A liquid crystal molecule (or mesogen) is anisotropic in shape. A simplified view of liquid crystal
molecules is rod-like object which have both orientational and translational degrees of freedom. The
schematic representation of common liquid crystal phases is shown on Fig. (1.1). At high tempera-
tures an isotropic (disordered) phase is formed with absence of translational and orientational long
range orders. The liquid crystal in isotropic phase behaves like a fluid and looks transparent in a
daylight. With a decrease in temperature, the orientationally ordered nematic phase develops while
the centers of the mass of the molecules are still distributed random in space. However the long axes
are aligned on average, leading to long range orientational order. The average direction of alignment
is refered as the director i1 [1] as shown on Fig. (1.1). The word “nematic” originates from Greek
(vnue) which means thread. This name was given by G. Friedel [2] who observed the thread-like
textures associated with topological defects in nematics when seen under crossed polarizers of an
optical microscope. The phase transition from nematic to isotropic phase is a weakly first order
one [3]. Sometimes the transition temperature is called a “clearing point” because nematic phase
appears milky.

Nematic liquid crystals have very important symmetry that both directors i and —i correspond
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Figure 1.1: Schematic illustration of isotropic, nematic and smectic A liquid crystals phases. Here
rods represent the long axes of the molecules. An example molecule of 8CB is shown on the bottom
of the figure. It consists of two benzene rings and two terminal groups.
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to the same physical state. In particular this symmetry implies that the elastic free energy of the
nematics should be proportional to the gradient of fi squared. The elastic theory of curvature
distortions for nematic liquid crystals was developed by Oseen [5] and Frank [6]. In the absence of

an applied magnetic field, the elastic free energy density is given by the following equation:

1
Frrank = 3 [k11(V - )2 + kop (- V x 01)2 + kga(f x (V x 10))?] (1.1)

where ki1, koo and k33 are the three Frank elastic constants associated with splay, twist and bend
distortions, respectively. These characteristic deformations are illustrated on Fig. (1.2). Note that
each term yields the same energy for i and —i as required for the symmetry of the nematic. In
many cases it is helpful to use further approximation for the Frank free energy Eq. (1.1), namely
to assume the elastic isotropy associated with splay, twist and bend distortions. In one constant

approximation k = k13 = kog = k33 the free energy density takes form:

1 A N 1 1 on\2 on\ 2 o2
Fy = §k [(divii)® + (curlh)?] = Ek danp 0°nP = Ek [(6_}() + (5) + (E) ] (1.2)
The order parameter for nematic liquid crystals is a tensor which respect the symmetry i1 to —ii

and it is defined by:

Qap = %(ZB UiqUig — 5a5]) (1.3)

i
where the sum is over all molecules and «, are summed over z,y and z. The tensor Qug is
symmetric and traceless by construction, since u;ou;z = 1. In the computer simulations [4] the
tensor Q. is diagonalized and its largest eigenvalue S and corresponding eigenvector (director) i
are computed. When @, is multiplied by i from both sides uoQqsug, the degree of alignment S

can be rewritten in the following form:



TwistK,,

Figure 1.2: Schematic illustration of splay, twist and bend distortions of a nematic liquid crystal.
The heads of the “nails” represent the rotation of the molecules out of the plane of the page for
twist deformation.

The value of S is a measure of degree of order in the system: it varies from 0 in the isotropic phase
to 1 in a perfectly ordered sample.

Upon further cooling down, the translational symmetry of the nematic phase gets broken leading
to density modulations in one dimension. In smectic phase Fig. (1.1) molecules tend to aggregate
into layers with well defined equilibrium positions and spacings. Within the layers the center of
mass of molecules could be random (Smectic A) or have long range hexagonal (orientational) order
(Smectic B). In smectic C phase each layer is still a two dimensional liquid but molecules tilted with
respect to the normal to the layers. Sometimes smectic liquid crystals are called one—-dimensional
solid. But the name itself comes again from Greek (ounypa = soap) and it was given because
certain mechanical properties of smectics reminiscent to the ones of usual soap. The elastic energy

for a smectic was derived in the 1930’s by Landau and Peierls:

F = S[B(Vj)? + Ku(Viu)’] (1.5)

where first term is associated with dilatation (compression) of the layers and second one corresponds
to splay distortion of the director at constant layer spacing. Here u describes the displacement field
with respect to the ground state of uniform layers. However the smectic free energy Eq. (1.5) is not

rotationally invariant. The lowest order correction to the first term in compression energy will be
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2
iB [VHu -3V J_U)z] . This additional non-linear term leads to a buckling instability in a stretched
smectic and to fluctuations that normalize compression constant B to zero and splay constant Ki;

to infinity in three dimensional system [7].

1.2 Lebwohl-Lasher Model

The Lebwohl-Lasher (LL) model is the lattice version of the Maier—Saupe model for nematics with
an orientational order—disorder transition. While it neglects the coupling between the orientational
and translational degrees of freedom present in a real nematic liquid crystal, it is generally believed
that this coupling does not play a significant role at the nematic—isotropic (NI) transition. With the
absence of translational degrees of freedom the LL model is particularly well-suited for large—scale

simulations of the transition. The model is defined by the following Hamiltonian:

H:—e;bPz(ﬁi-ﬁj):—eqa{g (ﬁi-ﬁj)2—%} (1.6)
where the sum is over all nearest—neighbors, € is a coupling parameter and P, is the second Legendre
polynomial. The long axes of the rotors are specified by unit vectors fi; and represents a group of
approximately 10 molecules. The LL potential Eq. (1.6) is a lattice version of Frank elastic energy
Eq. (1.2) in one—constant approximation (ki1 = ko2 = k33). The LL model has been intensively
investigated using Monte Carlo techniques since its introduction [9, 10, 11, 12, 13, 14, 18]. The
most complete numerical analysis of the NI transition in the LL model using the conventional single
spin flip Metropolis algorithm was carried out by Zhang et al. [13] on systems up to a size of 282.
However, the single spin flip algorithm is inefficient in the critical region and during the course of
a simulation the system becomes trapped in one of the local minima corresponding to either the
ordered or disordered phases. This difficulty can be overcome by using a cluster algorithm which
is most efficient in the critical region and the system samples both local minima effectively. The

first such algorithm for nematic liquid crystals was introduced by Kunz and Zumbach [16] to study

the two—dimensional LL model. Their algorithm is a modification of the Wolff algorithm [15] for
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ferromagnetic systems, and greatly reduces critical slowing down. In our earlier publication [18],
which we discuss in great details in Chapter 3, we used the Kunz—Zumbach algorithm to carry out
a finite-size scaling analysis of the NI transition in the three—dimensional LL model with systems

sizes up to 70% using the Ferrenberg-Swendsen reweighting technique [17].

1.3 Topological Defects in Nematic Liquid Crystals

Topological defects play an important if not determining role in such phenomena as the structure in
confined geometries (Chapter 2), the nature of phase transitions (Chapters 3-4), or the approach to
equilibrium after a quench into an ordered state (Chapter 5). In this Chapter we give basic definitions
of topological defects in nematic liquid crystals which are disclination lines and monopoles.

For simplicity let us consider a planar structure where director is confined to the zy plane and
z independent. Taking the director components n, = cos¢,ny = sing,n, = 0 and writing the free
energy density in one constant approximation, the equation (1.2) reduces to the following simple
form:

Fy =3 k (Vo) (L.7)

DN =

The non—trivial solutions of this equation are:

p=sa+c (1.8)

where a = tan~!(y/x), c represents a constant phase and s could be any half-integer:

1
s=d5, £1, £, . (1.9)

The singular disclination line runs parallel to z axis and the director orientation changes by 27s
around the core of the line. s is known as the strength of the disclination. In Fig. (1.3) we show a

few examples of singular configurations for various values of s and ¢ in zy plane . To visualize three
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s=1, c=0 s=1, cT12 s=-1,¢=0
N
=
=
=12, c=0 =2 c=0

s=-1/2, c=—114

Figure 1.3: Examples of the director configurations around defects with various strengths s and
phases ¢, see Eq. (1.8). Note the difference between top left and top right vortices. In the first
case the director rotates clockwise around the core (s = 1) unlike the later case where there is
anti-clockwise rotation s = —1 of the director. And these vortices can not be transformed into each
other by simply rotating the overall phase, unlike the top left and middle vortices.
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Figure 1.4: a) Director configuration around the core of a twist disclination line (marked by the
cross); heads of the “nails” shows the rotation of the molecules out of the plane of the page. To the
left of the defect, the director is parallel to the line and perpendicular to plane of the page. On a
right side the director is perpendicular to the disclination line and lies in the plane of the page. b)
Schematic presentation of the director orientation inside and out of the twist disclination loop. The
region inside the twist loop has an uniform orientation and rotates by 90° with respect to exterior
director orientation.

dimensional disclination lines one can imagine extending the planes shown in the Fig. (1.3) into and
out of the page. Constructed in such a way the s = i% line is called a wedge disclination and s = +1
is refered as type—1 disclination line. In a large enough sample type-1 line can reduce its energy
by escaping in third dimension and form non-singular configuration Fig. (1.6), sometimes called
escaped radial configuration. We discuss in great details in the next Chapter the different conditions
required for obtaining either escaped radial or type—1 lines in confined geometries. Another type
of three dimensional line defect is so called twist disclination line which is shown schematically on
Fig. (1.4a). In the twist line the director rotates out of the plane of the page by 180° around the
core of the line.

The order parameter space for nematic liquid crystal is the two-dimensional projective plane RP?2,
which can be visualized simply as a unit sphere with antipodal (opposite) points identified [19]. Any
stable % disclination (wedge or twist) could be represented as a noncontractible path on the order
parameter space that connects two opposite points. All other half-integer valued lines, whether

1

positive or negative, can be continuously deformed to a line with charge +3,

and integer—valued

lines can “escape in the third dimension” [19].



a) b)
Figure 1.5: a) Director configuration around the core of the wedge disclination line (marked by the

cross). The director rotates by 180° in the plane perpendicular to the disclination line. b) The
radial configuration of the director (shown by the dashed line) around the wedge disclination loop.

In the bulk, disclinations can form either closed loops (because of a large energy cost associated
with having a free end) or terminate on the boundaries. The examples of twist and wedge loops
are illustrated on Fig. (1.4b) and Fig. (1.5b) respectively. The main difference between these two
configurations is that wedge loop has a net monopole charge Eq. (1.10) when seen from a distance
larger than its radius. While twist loops do not carry a net charge and thus appear uniform at large
distances. In general, monopole charge of a point (or a loop) can be defined as an integral of a flux

going through the enclosed surface:

q= 8i7r /dsi €ijk - (G50 X Okn) (1.10)

where the charge of the monopole g could be any positive integer. In the Chapter 4 we explore the
question of locating the point monopoles in the vicinity of the nematic—isotropic phase transition.
We also study the distribution of disclination loops above, below and at the transition and extract

their integer monopole charge.
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Figure 1.6: a) Side and top views of singular disclination line of unit charge. Director rotates by

360° around the core of the line. b) Escaped Radial non—singular configuration is shown.
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Chapter 2

Nematics Confined to the Capillary

In this chapter we describe the results of Monte Carlo simulations of the Lebwohl-Lasher model of
nematic liquid crystals confined to cylindrical cavities with homeotropic (perpendicular) anchoring.
We show that the ratio of the bulk to surface couplings is not in general equal to the corresponding
parameter K /W used in elastic theory (where K is the Frank elastic constant in the one constant
approximation and W is the surface anchoring strength). By measuring the temperature dependence
of K /W (which is equivalent to the surface extrapolation length) we are able to reconcile the results
of our simulations as well as others with the predictions of elastic theory. We find that the rate at
which we cool the system from the isotropic to nematic phase plays a crucial role in the development
of the final director structure, because of a large free energy barrier separating different director
structures as well as the temperature dependence of K/W. With a suitably fast cooling rate we are
able to keep the system out of a metastable planar state and form an escaped radial structure for

large enough systems.

2.1 Nematic Liquid Crystals in Confined Geometries

The properties of nematic liquid crystals in confined geometries continues to be an interesting prob-
lem for both basic science and technological reasons [1]. Nematics confined to cylindrical cavities

with homeotropic radial boundary conditions can exhibit a variety of nontrivial structures depend-

13
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ing on the competition between bulk elastic and surface energies. By minimizing the Frank elastic
free energy Cladis and Kleman [2] and Meyer [3] showed that for a cylinder with a sufficiently large
radius an escaped radial (ER) configuration will form. They found based on elastic theory that the

angle that spins make with the cylinder axis is given by:

9(r) = 2- tan—l(}%) 2.1)

where R is the radius of the cylinder and r is the distance from the axis. Consequently the free

energy, which includes only splay and bend deformations will be:
F=3nK (2.2)

where K is a coupling in one-constant approximation. Note that we put all the surface elastic
constants to zero Koy = K3 = 0. This configuration can be thought of as a planar radial (PR)
structure (i.e. a disclination line) which has “escaped” along the axis of the cylinder (see Fig. 2.1).
Later studies [4] showed the possibility of additional structures including planar polar (PP) and
planar polar with two line defects (PPLD). In these latter configurations the director lies in a plane
perpendicular to the axis of the cylinder with a strong component along a single in-plane direction
(see Fig. 2.2). In the PP structure the local director is uniform near the axis of the cylinder and
radial at the boundary. One can think about this configuration as if two half-integer disclination
lines were pushed out of the cylinder leaving defectless structure inside the cylinder as shown at
Fig. (2.2a). Crawford et. al. [4] obtained an analytical solution for the director configuration for
PP, which is for weak anchoring W is:

T R4y
Y(r,0) = 5 — tan {7]%2 o tanG} (2.3)

where the angle ¥ (r,6) is measured in the plane perpendicular to the axis with respect to radial

direction and (r, ) are usual polar coordinates. Here we define y = (£2+1)/2—¢ and ¢ = 2K/RW.
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The free energy per unit length of the cylinder is given by:

Fpp = nK{ —In(267) + (1 - 7)/¢} (2.4)

From these equations one can expect that ER structure should form for large dimensionless parameter
RW/K avoiding costly deformation associated with the core. In the PPLD structure there are two
half-integer disclination lines parallel to the cylinder axis and the distance between these lines is
roughly temperature independent and approximately equals to the radius of the cylinder.

Kralj and Zumer [5] carried out a very complete numerical stability analysis of the various
nematic structures in a cylindrical geometry by minimizing the Frank elastic energy (including the
saddle-splay elastic constant Ks4). For most values of the elastic constants they found a phase
diagram with ER and PP structures, with the ER structure stable for large radii and/or strong
anchoring. In particular if the bend and splay elastic constants are equal and Ky4 = 0, then the
ER structure should form when RW/K exceeds about 27 [6], where R, W and K are the cylinder
radius (measured in units of intermolecular spacing), surface anchoring strength, and Frank elastic
constant respectively. However, a PR structure appears if the twist constant is very large compared
with splay. They also found that the PPLD structure can be stabilized if K5, is nearly zero, R
is approximately 100, and the half-integer defect lines are separated by a distance approximately
equal to the diameter of the cylinder. An analytic study of these director structures was carried out
by Burylov [7] with similar results.

Monte Carlo (MC) simulations of a cylindrically confined nematic with radial homeotropic bound-
ary conditions were first performed by Chiccoli et al. [8] using the Lebwohl-Lasher lattice model [9].
This model represents each mesogenic molecule or small group of molecules by a three—dimensional
spin vector. These spins are free to rotate about their centers which are fixed on the sites of a lattice.
Spins whose distance r from the center of the cylinder is less than R, the radius of the cylinder,

interact with their nearest—neighbors through the usual bulk Lebwohl-Lasher pair potential:

U,'j = —GbPQ(COS 011) (25)
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Figure 2.1: Schematic director pattern in the (a) escaped radial (ER), and (b) planar radial (PR)
configurations. The cylinder axis is vertical in (a) and perpendicular to the page in (b).

where 6;; is the angle between two spins ¢ and j, P is a second rank Legendre polynomial and ¢ is a
positive constant for nearest—neighbor sites and zero otherwise. The homeotropic surface anchoring
is introduced via a group of boundary layer spins located at distances R < r < R, which point in a
fixed radial direction. The interaction of these spins with the spins inside the cylinder is described
by the potential:

Ui, = —€sPa(cos 0;1,) (2.6)

where spin 4 is located inside the cylinder and spin k is the nearest—neighbor fixed spin which belongs
to the boundary layer. The coupling €, is the surface anchoring strength. The total potential energy
is given by the sum of the two energies above, summed over all pairs of spins. Note that in the
Lebwohl-Lasher model, because the energy is invariant under a uniform rotation of all the spins,
the bend, splay and twist elastic constants are equal, and the saddle splay elastic constant Ko4 is
identically zero.

Chiccoli et al. [8] studied cylinders of radii 6 and 11 lattice spacings and heights 40,52, 62, and
82 lattice spacings with periodic boundary conditions along the cylinder axis. The spins were placed
on the sites of a simple cubic lattice and the director structures were studied at a temperature of

0.6, measured in units of €,. Various values of the ratio of the surface anchoring strength €5 to the
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Figure 2.2: Schematic director pattern in the (a) planar polar (PP), and (b) planar polar with line
defects (PPLD) configurations. The cylinder axis is perpendicular to the page.

bulk nearest—neighbor coupling €, were considered, the largest being unity. In all cases, a planar
structure was observed; however, these authors did not determine whether this structure is PP or
PPLD.

Subsequently Smondyrev and Pelcovits [10] carried out Monte Carlo simulations on much larger
Lebwohl-Lasher systems up to radii R = 160, with a height of 16, again using a simple cubic
lattice. For low values of the radius or anchoring strength they found a PPLD structure, whereas for
RW/K = 160,¢5/€, = 1, and a temperature of 0.9, they obtained a metastable ER configuration.
But this metastable structure eventually collapsed to a planar state, apparently in contradiction
with elastic theory which [5] predicts that the ER structure should be stable when RW/K exceeds
approximately 27. If we assume (incorrectly, as we show in Sec. 2.2) that the ratio €;/e, equals the
corresponding Frank elastic energy ratio W/K, then Smondyrev and Pelcovits were simulating a
system with RW/K = 160, far in excess of the critical value of 27.

Bradag et al. [11] carried out molecular dynamics simulations on cylindrically confined nematics
interacting with a modified induced—dipole-induced—dipole interaction. For systems quenched from
the isotropic phase to temperatures deep in the nematic phase, a phase diagram was obtained that

is in reasonable agreement with the predictions of elastic theory. For the largest systems studied
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(radii of 16 lattice spacings) the PP, PPLD and ER structures were observed with increasing values
of the surface interaction. For the case of equal elastic constants (i.e. like the Lebwohl-Lasher
model) the ER structure appears when the ratio of the surface to bulk interaction energies is 0.2.
However, these simulations were carried out for only 10000 time steps leaving open the possibility
that the ER structure ultimately collapses. Also, these simulations were carried out at apparently
lower temperatures than those used in the Monte Carlo simulations.

In this chapter we report the results of MC simulations of the confined Lebwohl-Lasher model
which address the question of why the ER structure was not observed in previous MC simulations.
We find that the ratio of the bulk—to—surface couplings in the Lebwohl-Lasher model, €, /¢, is not
equal to K/W, except at very low temperatures. The latter quantity is equivalent [12] to the surface
extrapolation length b. We find that there is significant dependence of b on temperature in the
Lebwohl-Lasher model; in particular b grows as the NI transition temperature is approached from
below (a feature observed in experimental studies of confined nematics [13, 14]). Thus, identifying
the parameter Re,/e; with RW/K = R/b is in general incorrect. Except at very low temperatures
RW/K will be less than Re,/e; (substantially so near the NI transition). Comparing the results of
simulations with the predictions of elastic theory then requires consideration of this difference.

We also find, for large enough systems, that the rate at which the system is cooled from the
isotropic to the nematic phase determines which director structure is ultimately observed in a simu-
lation. Because b is large near the NI transition, a slow cooling rate will first yield a PPLD structure
in this temperature range, in agreement with elastic theory which predicts that the PPLD is stable
for small values of R/b. However, because of the large free energy barrier between the ER and PPLD
structures, continued slow cooling to lower temperatures (where b is small and elastic theory predicts
the appearance of the ER structure for sufficiently large R) will not yield the expected ER structure;
the system becomes trapped in the metastable PPLD state. On the other hand, a relatively rapid
cooling from the isotropic phase to low temperatures bypasses the PPLD state and allows the ER
structure to form. To our knowledge, this is the first time a stable ER structure has been seen in a

Monte Carlo simulation of confined nematics.
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This chapter is organized as follows. In the Sec. 2.2 we describe our measurements of the surface
extrapolation length and its temperature dependence. In Sec. 2.3 we report on simulations of a
cylindrically confined nematic, exploring the effect of different cooling rates on the formation of the

ER and PPLD structures. We offer some concluding remarks in the final section 2.4.

2.2 Surface Extrapolation Length

To measure the temperature dependence of the surface extrapolation length b, we consider a modifi-
cation of the discussion presented in Ref. [12], where this length is defined by examining the director
profile in a nematic confined between two plates which impose a twist distortion that is uniform
across the sample except near the plates. The twist geometry is appropriate for studying planar
anchoring at a surface. As we are interested in homeotropic alignment we consider instead a splay
geometry. As shown in Ref. [12] the extrapolation length can be defined by extrapolating the con-
stant slope portion of the director profile corresponding to the uniform twist or splay distortion;
see Fig. (2.3). By minimizing the total elastic energy consisting of the bulk Frank energy in the
one—elastic constant approximation and the surface energy, it was shown in Ref. [12] that the length
b so defined is related to the Frank elastic constant K and the surface energy W by b = K/W.

We measured b defined in the above fashion in the Lebwohl-Lasher model on a cubic lattice of
linear size 40. The spins on the plane z = 39 were coupled via the homeotropic surface interaction,
Eq. (2.6) to the boundary spins on the plane z = 40 which are aligned along the z axis. Spins on
the opposite wall, z = 0, were rigidly aligned parallel to the z axis. These spins interact with their
interior neighbors via the bulk interaction, Eq. (2.5). Periodic boundary conditions were imposed
on the remaining four sides of the lattice. In Fig. (2.3) we assume that the derivative of the angle

6(0) is constant in a bulk phase:

df(z) 6(L)—06(0)
dz L

(2.7)

On the other hand the surface prefers to have (0) = 0. Therefore we have a competition between
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Figure 2.3: Measurement of the extrapolation length b in a Lebwohl-Lasher model of linear size 40
for three representative temperatures: a) T' = 0.5, b) T' = 0.85, and c¢) T' = 1.05, (the NI transition is
approximately 1.1). In each plot the average value (in degrees) of 6, the angle made by the spins with
z axis is shown as a function of z, where z is measured in units of the lattice spacing. The spins at
z = 0 are rigidly aligned parallel to the x axis, while the spins at z = 39 are coupled homeotropically
with €; = 0.9 to the spins at z = 40 which are aligned parallel to the z axis. Following [14] we define
the extrapolation length b as shown in the figures. The solid straight lines are the best fits (to the
eye) of the bulk splay distortion imposed by the boundary conditions. The numerical values of b
for these three temperatures are 2.1, 6.2 and 17.3 respectively. Values for other temperatures and a
smaller value of the surface coupling are given in Table 2.1.
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Table 2.1: Temperature dependence of the extrapolation length b for two different values of the
surface coupling e5. The bulk coupling € is unity in both cases. The system is a cubic lattice of
linear size 40.

T € =045 ¢ =09

1.0 11.3 10.5
0.9 8.5 7.1
0.8 7.0 5.0
0.7 5.1 4.1
0.6 3.0 2.8
0.5 2.1 2.1

surface and bulk terms in the total free energy:
1 1 (6)-60))
F = W6 (0) + §KL<M> (2.8)

Minimizing the above equation with respect to 6(0) one can easily obtain the expression for the

angle 6(0):

_Kdi(z) _ 1 di(z)

6(0) = W dz  bT) dz

(2.9)

which is the definition of the extrapolation length b = K/W.

Starting in the isotropic phase the system was cooled down in temperature steps of 0.05. We
equilibrated at least 200000 MC steps at each value of the temperature. We display results in
Fig. (2.3) for three values of temperature ranging from deep in the nematic phase to near the NI
transition. For each value of z we plot the average value of the spin’s angle with the z axis (averaging
over all sites in the z—y plane). We determined b by extrapolating the linear director profile predicted
by Frank elastic theory. Note that b is measured from z = 39, the layer of spins which are coupled
homeotropically to the fixed boundary spins at z = 40. We note that b appears to diverge near the
NI transition temperature in agreement with experimental results [13, 14]. Additional data for b
as a function of T' and €, is shown in Table 2.1. As expected, b increases with decreasing surface
coupling.

Strong subsurface deformation is present as indicated by the deviation of the director profile
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Table 2.2: Temperature dependence of R/b for cylinders of radii 80 and 120 with €;/e;, = 0.9. The
surface extrapolation length b is given in Table 2.1. According to elastic theory the PPLD structure
should be stable for R/b less than approximately 27, while the ER structure should be stable for
larger values of R/b.

T R/b,R=80 R/b,R=120

1.0 7.6 114
0.9 11.3 16.9
0.8 16.0 24.0
0.7 19.5 29.3
0.6 28.6 42.9
0.5 38.1 57.1

from the linear behavior predicted by Frank elastic theory. It is not clear to us what the origin
of this deformation is. Previous work on subsurface deformations [15] found that the deformation
arises for anisotropic interactions which is not the case for the Lebwohl-Lasher model. However,
our determination of the extrapolation length b is not affected by the subsurface deformation.

It is worth commenting on the value of b that would be obtained by examining the director
pattern near the strongly anchored wall, z = 0. The spins on this wall are coupled via the bulk
interaction (with a coupling € of unity) to the spins on the plane z = 1. Thus, one can think of these
latter spins as having a homotropic surface interaction with the surface at z = 0. Extrapolating the
director profile to negative z and measuring b from z = 1 would yield a value of b comparable to that
obtained at the opposite wall, z = 40. Note, however, that because the effective surface coupling
€s is unity on the z = 0 wall, the value of b extracted there will be somewhat smaller than that
obtained on the opposite wall where we used €; = 0.9.

The strong dependence of b on temperature indicates that W, the surface energy, has a different
dependence on temperature than the Frank elastic constant K. The latter was measured in the
Lebwohl-Lasher model by Cleaver and Allen [16], who found it to be approximately proportional
to S%, where S is the nematic order parameter. Experimental measurements of b [13] find that
it diverges as (Tv; — T')~!, where T is the NI transition temperature, which suggests that W is
proportional to S*. Our data is not sufficiently robust to determine the dependence of W on S.

The temperature dependence of b helps to explain the apparent discrepancy between the results

of previous simulations [8, 10] and elastic theory [4], summarized in Sec. 2.1. Even at a relatively
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low temperature 7' = 0.6 as was used in Ref. [8], b is of order 3, and thus the elastic theory
parameter RW/K = R/b that determines the relative stability of the various director structures is
approximately one—third the value of the corresponding Lebwohl-Lasher “bare” parameter, Re;/e€p.
Ref. [10] reported on simulations carried out at T' = 0.9 with €,/e;, = 1.0, where the Lebwohl-Lasher
parameter is approximately 7 times greater than RW/K. Thus the simulations carried out in this
latter work at a value of R = 160, in reality correspond to RW/K = 23, i.e., below the threshold
value for the formation of the ER structure. On the other hand, the simulations of Ref. [11] were

carried out deep in the nematic phase where RW/K and Re,/e;, should be nearly equal.

2.3 Stability of the ER and PPLD structures

With the insight gained in the previous section regarding the proper comparison of simulation results
with elastic theory, we carried out additional MC simulations on the Lebwohl-Lasher model confined
to a cylinder. Previous simulation studies of nematics confined to cylinders [8, 10, 11] were done on
a cubic lattice. However, this choice of lattice biases the position of the two disclination lines in the
PPLD structure; in particular they always appear on one of the two crystalline axes perpendicular
to the long axis of the cylinder. In addition approximately half of the spins on the perimeter of
the cylinder have two nearest—neighbor spins on the fixed boundary layer (see Eq. 2.6), whereas the
other half have only one such nearest—neighbor, resulting in a nonuniform coupling of the nematic
to the cylindrical surface.

To eliminate this nonuniformity we worked instead with a honeycomb lattice. With this choice
nearly all spins on the perimeter of the cylinder have only one nearest—neighbor in the boundary
layer. While the honeycomb lattice does not have continuous rotational symmetry about the cylinder
axis, we found that its higher symmetry about this axis (six—fold as compared to four—fold for the
cubic lattice) led to the appearance of the disclination lines in the PPLD structure on axes not
necessarily along the crystal lattice directions. The honeycomb lattice is bipartite allowing us to
implement a standard “checkerboard” algorithm [17], an efficient choice for vector processors. We

divided the system into two interconnected sublattices and then alternately updated spins on each.
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As in Ref. [10] we determined the nature of the resulting director structures by computing an
escaped order parameter, which measures the degree of spin tilt away from the plane perpendicular

to the cylinder axis, and is a sensitive measure of the presence of the ER structure. It is given by:

1 o s
Py =+ > Pyt - 2) (2.10)

where the cylinder axis is along the z direction. The escaped order parameter is calculated as a
function of the distance from the center of the cylinder, and the sum is over spins in a thin annulus
with the same height as the cylinder.

We explored the stability of the PPLD and ER structures for systems of two different radii, 80
and 120, both of height 16, with €;/€, = 0.9. In Table 2.2 we tabulate the values of R/b for these
two radii using the data for b from Table 2.1. Using the table we see that elastic theory predicts
that the PPLD structure should be stable for temperatures greater than approximately 0.6 and 0.7,
for R = 80 and 120, respectively, while the ER structure should be stable at temperatures below
these values. Note that elastic theory by its nature is unable to predict the transition temperature
separating the PPLD and ER structures from the isotropic phase. Beginning in the isotropic phase
at T' = 1.4 we cooled the system of R = 80, in temperature steps of 0.1 equilibrating 100000 MC steps
at each temperature. At T' = 0.9 a stable PPLD structure was formed. We checked the stability of
this structure up to 500000 MC steps. Upon further cooling down to T' = 0.5 (again equilibrating
100000 MC steps at each temperature) the system remained trapped in the PPLD structure even
though at this lower temperature b = 2.1 and R/b = 38.1, well above the threshold predicted by
elastic theory for the formation of the ER structure. We found similar behavior irrespective of the
cooling rate used, including instantaneous quenches directly from the isotropic phase. Conversely,
if we began at T' = 0.8 with an ER configuration constructed by hand using the mathematical form
derived in Refs. [2, 3], we found this state to be stable even after 500000 MC steps. Yet for this
value of T the PPLD state should be stable (R/b = 16.0). These results suggest that there is a
large free energy barrier separating the PPLD and ER structures, and the system can be trapped

in either state.
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We found somewhat different results for the larger radius system, R = 120. We cooled this

system down from 7" = 1.4 again in temperature steps of 0.1 equilibrating 300000 MC steps at each
value of temperature. As expected a stable (up to 500000 MC steps) PPLD structure was formed at
T =09 (R/b=16.9 < 27). Upon further cooling the system remained trapped in the PPLD state,
just as in the case of the smaller system. However, if the same system were equilibrated 100000 MC
steps at each temperature step as it was cooled from T' = 1.4 to T = 0.8, then an ER structure
was formed at the latter temperature and remained stable up to 500000 MC steps. In this case the
more rapid rate of cooling allowed us to bypass the incipient PPLD structure at 7' = 0.9 and reach
a stable ER structure. At T = 0.8, b = 5, and R/b = 24, which is slightly below the critical value of
27 predicted by elastic theory. We suspect that our ability to form an ER structure for this system
of larger radius is due to the smaller temperature range (0.9 to 0.75) where the PPLD structure is
stable compared with the case of R = 80, where the PPLD structure, according to elastic theory

and Table 2.2, should be stable from 7'~ 0.9 down to 7" ~ 0.6.

2.4 Summary of the Results

In this chapter we have addressed the question of reconciling the predictions of elastic theory with
the results of numerical simulations for nematics confined to cylindrical cavities with homeotropic
boundary conditions. Our main result is that care must be taken in comparing elastic theory
with numerical simulations because of the strong temperature dependence of the ratio K/W, the
surface extrapolation length. Except at very low temperatures, this ratio is much larger than the
corresponding “bare” ratio of bulk and surface energies in a numerically simulated model. When
this difference is taken into account, the results of numerical simulations are consistent with the
predictions of elastic theory. In particular, the ER structure forms for values of RW/K above the
critical value of 27 predicted by elastic theory, providing that the metastable PPLD structure can be
avoided. Because K /W is very large near the NI transition, and thus RW/K is relatively small, the
system will readily form a PPLD structure if it is cooled slowly from the isotropic phase. However,

with rapid cooling and for large enough systems where the PPLD phase is limited in its temperature
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range, this state can be bypassed and a stable ER structure formed at lower temperatures where

RW/K is sufficiently large.
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Chapter 3

Simulations of the

Nematic—Isotropic Transition

In this chapter we report the results of simulations of the three-dimensional Lebwohl-Lasher model
of the nematic-isotropic transition using a single cluster Monte Carlo algorithm. The algorithm,
first introduced by Kunz and Zumbach to study two—dimensional nematics, is a modification of the
Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free
energy in the neighborhood of the transition for systems up to linear size 70. We find a double well
structure with a barrier that grows with increasing system size. We thus obtain an upper estimate
of the value of the transition temperature in the thermodynamic limit.

The Lebwohl-Lasher (LL) model [1] is a lattice model of rotors with an orientational order—
disorder transition. While it neglects the coupling between the orientational and translational de-
grees of freedom present in a real nematic liquid crystal, it is generally believed that this coupling
does not play a significant role at the nematic—isotropic (NI) transition. With the absence of trans-
lational degrees of freedom the LL model is particularly well-suited for large—scale simulations of

the transition. The model is defined by the Hamiltonian:
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T o

<ij>
where the sum is over all nearest-neighbors and € is a coupling parameter. The long axes of the
rotors are specified by unit vectors &;. The LL model has been intensively investigated using Monte
Carlo techniques since its introduction [2, 3, 4, 5, 6, 7].

As in real experimental systems the NI transition in the LL model is weakly first—order; thus,
there is significant critical slowing down in the neighborhood of the transition. In a Monte Carlo
simulation the system gets trapped in one of the free energy wells corresponding to the nematic or
isotropic phase, and the conventional single flip Metropolis algorithm becomes inefficient especially
as the system size is increased. While Boschi et al. [7] carried out simulations on systems as large as
120 x 120 x 120, the most detailed study of the NI transition was carried out by Zhang et al. [6] on
systems up to 28 x 28 x 28. These authors used the Lee—Kosterlitz finite size scaling method [8, 9],
supplemented by the Ferrenberg-Swendsen reweighting technique [10] to determine the order of the
NI transitions and estimate the value of the transition temperature T, in the thermodynamic limit.
In the Lee—Kosterlitz method one examines the finite size scaling of the free energy barrier AF
between the nematic and isotropic phases; at a first—order transition this should be an increasing
function the linear system size L, while it should approach a constant for systems with continuous
phase transitions. For a large enough system, specifically L > £, where £ is the correlation length,
a finite size scaling analysis predicts that AF ~ L? for three—dimensional systems. In the LL model
Zhang et al. found a small free energy barrier appearing at the two largest system sizes they studied,
L = 24 and 28, and thus did not have enough data to carry out a finite size scaling analysis of AF'.
Instead they estimated the value of T, in the thermodynamic limit by extrapolating three different
measures of T,: the positions of the maxima in the specific heat and susceptibility and the the
temperature where the two free energy wells are of equal depth. However, as we demonstrate below,
the system sizes considered by Zhang et al. are not in the finite-size scaling regime, and thus their

estimate of T, in the thermodynamic limit is not accurate.
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3.1 Single Cluster Monte Carlo Algorithm

Over the past decade significant advances have been made in algorithm development which overcome
critical slowing down in magnetic spin systems [11]. In particular single cluster algorithms have
proven to be very efficient in simulating the three-dimensional Ising, XY and Heisenberg models.
These algorithms are nonlocal updating methods where a single cluster of spins is constructed and
the spins within the cluster are updated simultaneously. In the Ising case [12] clusters of spins
are formed by creating bonds between parallel spins with a probability that guarantees detailed
balance. For models with continuous symmetry Wolff [13] introduced a cluster algorithm where
“parallel spins” refer to spins which point in the same hemisphere. A hemisphere is defined by an
equatorial plane perpendicular to a randomly chosen direction #. Nematic liquid crystals differ in an
important symmetry aspect from magnetic systems, namely, “up” and “down” spins are equivalent.
To construct a cluster algorithm suitable for simulating the LL model the Wolff algorithm must be
modified to account for this symmetry difference. The necessary modification was done by Kunz
and Zumbach [14], and used by them to study the two—dimensional LL model. Here we use their
algorithm, along with the Lee—Kosterlitz finite size scaling method, to study the first-order transition
in the three-dimensional LL model.

Following Kunz and Zumbach, we randomly choose a direction . Then we reflect any molecular
long axes for which &; - ¥ < 0, by the transformation 6 — —4&; note that the Hamiltonian H is
invariant under this operation. Next we choose a site ¢ at random and reflect it, 6; = R(#); using

the reflection operator R(f) defined by:

This operation is illustrated in Fig. (3.1a). Unlike the original Wolff reflection operation which
reflects spins from the original hemisphere to the opposite one, the present reflection operator keeps
the molecular orientation vectors in the same hemisphere defined by ¥. Next we form bonds with

the nearest—neighbors of &} with probability:
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a) b)

Figure 3.1: (a) Illustration of the reflection operation R(t), Eq. (3.2). The unit vector ¥ is chosen
randomly at the start of the algorithm. The reflection operation yields the new molecular orientation
o; = R(%)o; as shown. (b) Illustration of the formation of a cluster of two molecules. Here we show
the projections of the two molecular long axes o; and o; on the plane perpendicular to ¥, as well
as the projections of the molecular long axes produced by the reflection operator R(f) acting on
these two molecules. Two molecules are likely to form a cluster if they each make an angle of
approximately 45° with £ and if the angle ¢ between their projections is less than 90°.

Py = l—eXp{min[O,B(&é-?fj)z—B(&é-(R(f)ﬁj))z]}

= 1- exp{min [0,4,3(&;. £)(6; -f«)((&; -8;) — (61 7)(5; r))] } (3.3)

where f = 3¢/2kpT. This probability is a modification of the one introduced by Wolff, replacing
the Heisenberg interaction —J&; - &; by the Lebwohl-Lasher interaction —3¢(6; - 6;)%. As in the
original Wolff algorithm we continue this process, forming bonds with the nearest—neighbors of all
reflected molecular orientation vectors until the cluster cannot grow any further.

To understand the formation of clusters, consider the projection of two molecular orientation
vectors, ¢; and one of its nearest-neighbors 5, on the plane perpendicular to  before the reflection
operation is performed (see Fig. 3.1b). A bond between these two molecules will likely form if the

angle ¢ between their projections is less than 90°. Note that the probability Eq. (3.3) for the bond

formation is maximized when the angle between &} and ¢, is 90° and each of these molecules makes
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an angle of 45° with £. Thus, as in the original Wolff algorithm at low temperatures the molecules
are nearly all aligned and it is highly probable that a large fraction of all molecules will be flipped
at once. On the other hand at high temperatures the distribution of molecules will be isotropic,
resulting in flipping small clusters in random directions. In the intermediate region close to the NI

transition temperature the system flips between isotropic and nematic states.

3.2 Theory of Finite Size Scaling

We have used the cluster algorithm to simulate the LL model on a simple cubic lattice of linear
dimension L, 30 < L < 70, with periodic boundary conditions, in order to study the properties of
the NI transition. The temperature T' was measured in dimensionless units of €/kp, in agreement
with the units used in previous studies of this model. Our initial random configurations were
equilibrated at least 200000 Monte Carlo steps (MCS) before starting production runs. We found
that the average cluster size at temperatures close to the NI transition is approximately 0.17N sites
per cluster (where N is the total number of lattice sites), essentially independent of system size.
Approximately half of the MCS resulted in clusters with fewer than ten sites and were efficiently
simulated with scalar code. However, a significant fraction of clusters had N/2 sites or greater, and
employing a vectorizable cluster construction method [15] yielded a sixfold speedup.

For each configuration generated, we calculated the energy per site, E = H/N. To ascer-
tain the nature of the phase transition we proceeded as in Ref. [6] and used the method of Lee
and Kosterlitz [8, 9], which relies on the single histogram reweighting technique of Ferrenberg and
Swendsen [10]. Following the approach of the latter authors we stored the configuration data in a
histogram H(E,T, L). The normalized probability distribution function P(E,T, L) of the energy is
then given by:

H(E,T,L)

P(E,T,L) = S HET D) (3.4)

Given this distribution function at temperature T, the Ferrenberg-Swendsen method allows the cal-
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culation of thermodynamic quantities at a different temperature T" in the neighborhood of T'. Specif-
ically, thermodynamic quantities at 7' can be calculated using the distribution function P(E,T', L)
where:

H(E,T,L)exp(—ABE)

PO L) = S~ (B, T, L) exp(— ABE) (3:5)

and Ap is the inverse temperature difference:

1 1

). (3.6)

A=z 7

Thus, accurate information over the entire critical region can be extracted from a small number of
simulations.

The Lee—Kosterlitz method utilizes the system size dependence of the barrier AF' separating the
isotropic and nematic free energy minima at the transition temperature to determine the order of
the transition. If the barrier grows with increasing the system size L then the transition is first
order; furthermore, if finite size scaling holds, then AF ~ L2 in a three-dimensional system. Here
L? dependence can be understood as a surface that separates ordered and disordered phases at
coexistence in the first order phase transition.

To determine the barrier height we use the free—energy-like quantity:

F(E,T,L) ~ —InP(E,T, L) (3.7)

which differs from the true free energy by additive quantities dependent only on 7" and L which
are irrelevant to computations of free energy differences. The additive quantities simply mean that
we performed a finite time simulations and our histogram P(E,T, L) is nearly proportional to the
exact one. This free—energy-like quantity is shown in Fig. (3.2) for different system sizes, and we
note the appearance of a pronounced double—well structure for sufficiently large system sizes. The
right and left hand wells correspond to the nematic and isotropic phases respectively. In collecting

our data we made sure that system made at least 100 hops between the two wells for the largest
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Figure 3.2: Free energy, Eq. (3.7), in units of € as a function of the energy per unit site E (also
measured in units of €), for four different lattice sizes, L = 30 (e),50 (A),60 (0),70 (x). The data
for the three largest system sizes have been displaced vertically for the sake of clarity.
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system size of 70, for a run of 6 x 10 MCS. For each system size, we performed sufficient MCS such
that the typical number of points in one bin of the histogram H is much larger than the variation in
the exponential factor exp(ATL?), where AT = T' — T. This criterion arises from the requirement
that the peak in the reweighted distribution Eq. (3.5) avoid the “wings” of the measured histogram.
Typically we found approximately 10* points in each bin and the exponential factor varied by about

10.

3.3 Free Energy Barrier and Critical Temperature

Zhang et al. [6] made similar plots of the free energy F(S,T, L) as a function of the nematic order
parameter S rather than the energy E. For the system sizes studied by these authors, with L < 28,
the free energy function F'(E,T, L) is a much weaker indicator of the nature of the NI transition.
However, for the system sizes we have studied, with 30 < L < 70, the free energy as a function of £
is a very good indicator as illustrated in Fig. (3.2). We calculated F'(S, T, L) for L = 28, the largest
system size studied by Zhang et al. to check that our cluster algorithm yields the same transition
temperature they determined using the conventional single spin flip MC algorithm. In general we did
not calculate F'(S,T, L) because this requires calculation of a histogram H(E, S, T, L), dependent
on S as well as E in order to carry out the reweighting. Calculation of this multiple histogram with
sufficiently good statistics is prohibitively time consuming for large systems.

The barrier height AF(L) can be computed as follows:

AF(L) = F(Ep,T,L) — F(Ey, T, L) (3.8)

where E,, is the energy corresponding to the top of the free energy barrier and E; is either one
of the degenerate local minima. In the finite size scaling regime we would expect that AF ~ L2.
Our results for the barrier height as a function of system size are shown in Fig. (3.3), where we plot
AF/L? versus L. Tt is apparent from our plot that even systems with L = 70 are not yet in the

finite size scaling regime. We have estimated the system sizes needed to observe finite size scaling
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Figure 3.3: The free energy barrier height AF/L? (measured in units of 10~%¢ divided by the lattice
spacing squared) as a function of L (measured in units of the lattice spacing). If finite size scaling
were obeyed, AF/L? would be independent of L.
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Figure 3.4: The transition temperature T.(L), (measured in units of ¢/kg) as a function of L3
(in units of 5 x 10~% inverse cubic lattice spacings), for the eight system sizes shown in Fig. (3.3),
showing apparent finite size scaling behavior (the straight line fit) given by Eq. (3.9) for system
sizes L > 35 (compare, however, with the behavior of the free energy barrier shown in Fig. (3.3).
The extrapolation of this line to infinite system size yields an estimate for the upper bound on the
transition temperature (indicated by the arrow) in the thermodynamic limit. The value of critical
temperature is T, = 1.1225 £ 0.0001.
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by fitting our data for AF(L) to the form AF(L) = aL? + bL + ¢, where the term proportional to

a is the finite size scaling law and the term proportional to b represents the leading correction to
scaling. We find that the ratio b/a ~ 30. Thus, to observe finite size scaling, one must have L > 30.

The transition temperature T.(L) for a particular system size L is given by the value of the
temperature where the two free energy wells have equal depths. Our results for 7.(L) are shown in

Fig. (3.4). From the straight line plotted in the figure we see that the finite size scaling relation,

AT =T, —T,(L) ~ L3, (3.9)

appears to work well for systems of size L > 35. Given the behavior of AF (L) shown in Fig. (3.3),
one should view this relation with caution. However, we can use this relation to provide an estimate
for an upper bound for the transition temperature from the intersection of the straight line with
the T.(L) axis yielding 7, = 1.1225 + 0.0001. This value is lower than that obtained in Ref. [6],
(T, = 1.1232 + 0.0001), which is not surprising given that smaller system sizes were studied in the

latter work.

3.4 Conclusions

In conclusion, we have used a modification of the single cluster Wolff algorithm for nematic systems
to efficiently study the NI transition in Lebwohl-Lasher systems [16]. As in the case of the cluster
algorithms developed originally for ferromagnetic models, this algorithm allows us to overcome the
critical slowing down associated with conventional single-flip Monte Carlo. The phase space can
then be sampled efficiently near the transition as the system will flip readily between the ordered
and disordered phases. We have been able to observe for the first time a clear free energy barrier
separating the nematic and isotropic phases, and have found that very large system sizes (L > 30)
will be needed to observe finite size scaling behavior. We have also applied the algorithm to study
the behavior of disclination loops in the transition region [17] and the efficiency of the algorithm

allow the study of many other interesting properties of the transition, which we discuss in the next



Chapter.
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Chapter 4

Disclination Loop Critical

Behavior near the NI transition

We investigate the behavior of disclination loops in the vicinity of the first order nematic—isotropic
transition in the Lebwohl-Lasher and related models. We find that two independent measures of
the transition temperature, the free energy and the distribution of disclination line segments, give
essentially identical values. We also calculate the distribution function D(p) of disclination loops of
perimeter p and fit it to a quasiexponential form. Below the transition, D(p) falls off exponentially,
while in the neighborhood of the transition it decays with a power law exponent approximately
equal to 2.5, consistent with a “blowout” of loops at the transition. In a modified Lebwohl-Lasher
model with a strongly first-order transition we are able to measure a jump in the disclination line
tension at the transition, which is too small to be measured in the Lebwohl-Lasher model. We
also measure the monopole charge of the disclination loops and find that in both the original and
modified Lebwohl-Lasher models, there are large loops which carry monopole charge, while smaller

isolated loops do not. Overall the nature of the topological defects in both models is very similar.
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4.1 Role of the topological defects at the phase transitions

In many physical systems, particularly two—dimensional with continuous order parameter symmetry,
topological defects can play an essential role at the phase transition between the ordered (or quasi-
ordered) and disordered phases. Using simple physical arguments Kosterlitz and Thouless [1] pointed
out that phase transitions in two-dimensional superfluid *He, crystalline solids and XY magnets
would occur via the unbinding of point topological defects. Subsequently, Kosterlitz [2] developed
a renormalization group theory for the two—dimensional XY model which provided quantitative
predictions for this defect—mediated critical behavior. Renormalization group theories for the defect—
mediated melting of crystalline solids in two—dimensions were developed by Nelson and Halperin [3]
and Young [4].

The theoretical picture for defect—mediated phase transitions in three dimensions is less clear. It
is expected on the basis of the Villain representation [5] that the transition in the three-dimensional
XY model is mediated by vortex loops [6]. In this scenario there is a finite length scale at low
temperatures associated with the typical size of vortex loops which disorder the system on smaller
length scales. At the phase transition, loops can exist on all length scales, i.e. there is “vortex—loop
blowout” [7, 8] and the system enters the disordered phase. Scaling and renormalization group
theories have been developed [9] which provide quantitative predictions for the critical behavior,
though these theories are not as well established as the corresponding Kosterlitz—Thouless theory in
two dimensions. Monte Carlo simulations [10, 11] have yielded further support for this vortex loop
picture of the phase transition. In the three—dimensional Heisenberg model there is also numerical
evidence [12] for a phase transition mediated by point topological defects (monopoles), though this
evidence has been questioned by other authors [13].

The role of topological defects at the nematic—isotropic phase transition poses intriguing ques-
tions. The defect structure in nematics is particularly rich and while sharing some similarities with
the defect structures of the XY and Heisenberg models, there are significant differences due to the
nature of the order parameter space. The local director fi of a nematic liquid crystal is defined as

the average direction of alignment of a group of molecules. However, unlike the case of ferromagnets,
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the directions i and —i are equivalent. Thus, the order parameter space for nematics is P», the
unit sphere with antipodal points identified. The stable topological defects [14] include monopoles
and disclination lines. The monopoles are similar to the point defects of the Heisenberg model,
though in the latter case, positive and negative topological charges of the same absolute value are
distinct, whereas they are equivalent in the nematic [15]. While defect lines in the XY model can
have any integer value with either positive or negative sign, one value of topological charge, +1/2,
characterizes the entire class of stable line defects in nematics [15, 16]. All other half-integer valued
lines, whether positive or negative, can be continuously deformed to a line with charge +1/2, and
integer—valued lines can “escape in the third dimension” [17]. As in the XY model the disclination
lines form closed loops or terminate on the surface of the sample because of the prohibitive energy
cost of a free line end. However, whereas the XY model loops carry no net monopole charge, nematic
disclination loops can (though all need not) carry monopole charge [18].

Not only is the classification of defects different in the nematic compared with the XY and
Heisenberg models, but also the nature of the phase transition, first order in the former case and
continuous in the latter. Lammert et al. [19] have argued that disclination lines are responsible for
the first order nature of the nematic—isotropic (NI) transition. They developed and studied a lattice
model of liquid crystals which allows for the suppression of the line defects while maintaining the
presence of monopoles as in the Heisenberg model. As the defect lines are made more costly Lammert
et al. [19] found that the transition between the ordered nematic phase (characterized by a nonzero
disclination line tension) and the isotropic phase (characterized by zero line tension) becomes more
weakly first order. At sufficiently large values of the core energy the transition splits into a pair
of continuous transitions, and a new phase appears with no long-range nematic order but nonzero
disclination line tension. In the extreme limit where the disclination lines are completely suppressed,
their model reduces to the Heisenberg model with the expected continuous phase transition.

In this paper we report on a numerical study of topological defect behavior near the NI transition
in the Lebwohl-Lasher (LL) lattice model [20] of liquid crystals which exhibits a weakly first—order

phase transition (a weak first—order transition is characteristic of real experimental systems as well).
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We also consider the defect behavior in a modified LL model which exhibits a strongly first—-order
transition. We find that two independent measures of the NI transition temperature, one the free
energy and the other the distribution of disclination line segments, give almost identical values. By
measuring the distribution of disclination loops as a function of their perimeter, we find evidence for
the “blowout” of disclination loops at the transition, similar to the three—dimensional XY model.
The disclination line tension in the modified LL model drops discontinuously to zero at the transition;
in the case of the LL model, the transition is too weakly first—order to detect a similar discontinuity.
We also measure the monopole charge of the loops and find in both the LL model and its modification
that large loops and small loops adjacent to large loops have nonzero monopole charge, while small
isolated loops do not. There appear to be no significant differences between the two models in the
nature of the topological defects present.

In Sec. 4.2 we provide the details of our simulations and results, followed in Sec. 4.3 by our

conclusions.

4.2 Simulations and Results

We performed Monte Carlo simulations on the Lebwohl-Lasher model, a lattice model of rotors with
an orientational order—disorder transition. While it neglects the coupling between the orientational
and translational degrees of freedom present in a real nematic liquid crystal, it is generally believed
that this coupling does not play a significant role at the NI transition. With the absence of transla-
tional degrees of freedom the LL model is particularly well-suited for large—scale simulations of the

transition. The model is defined by the Hamiltonian:

’HLL=—JZ P2(Ui'0j):_‘]Z{g(ai'aj)z_%} (4.1)

<ij> <ij>
where the sum is over all nearest-neighbors rotors situated on a cubic lattice. The long axes of the
rotors are specified by the unit vectors o;), P» is the second—order Legendre polynomial, and J is a

coupling parameter. The LL model has been intensively investigated using Monte Carlo techniques
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since its introduction [21, 22, 24, 25, 26, 27, 23]. The most complete numerical analysis of the NI

transition in the LL model using the conventional single spin flip Metropolis algorithm was carried
out by Zhang et al. [26] on systems up to a size of 28%. However, the single spin flip algorithm is
inefficient in the critical region and during the course of a simulation the system becomes trapped
in one of the local minima corresponding to either the ordered or disordered phases. This difficulty
can be overcome by using a cluster algorithm which is most efficient in the critical region and the
system samples both local minima effectively. The first such algorithm for nematic liquid crystals
was introduced by Kunz and Zumbach [28] to study the two—dimensional LL model. Their algorithm
is a modification of the Wolff algorithm [29] for ferromagnetic systems, and greatly reduces critical
slowing down. In an earlier publication [30] we used the Kunz—Zumbach algorithm to carry out a
finite—size scaling analysis of the NI transition in the three-dimensional LL model with systems sizes
up to 70 using the Ferrenberg—Swendsen reweighting technique [31].

Here we use the cluster algorithm to study the behavior of disclination lines and monopoles in

the critical region. Following Ref. [19] we introduce a disclination line segment counting operator,

Diju = 3 [1=sen{(0,-0)(0; - ) (ox - o) 0} (42)

which is unity if a disclination line segment pierces the lattice square defined by the four rotors
0i,04,0k and ;. This method of locating disclination segments is mathematically equivalent to the
method of Zapotocky et al. [32]. A disclination line segment can be considered as a bond on a cubic
lattice dual to the original lattice of the rotors, and only an even number of bonds meet at a dual
latticesite. Connecting the bonds to form disclination loops cannot be done in a unique way when
four or six bonds meet at a site. To deal with this ambiguous case we followed the approach of
Ref. [11] and chose a random pairing of the bonds. We thus traced the path of each disclination
line through the system until the path crossed itself and formed a loop. The bonds of the loop were
then eliminated from the dual lattice to avoid double counting when additional loops were traced.
We considered several measures of the nature of the disclination segments and loops, including

the number of segments in the nematic and isotropic phases at coexistence, the distribution of loops
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Figure 4.1: The logarithm of the distribution of disclination bond density in the Lebwohl-Lasher
model, Eq. (4.1) for system size 70® at the NI transition temperature T = 1.1226. The density is
defined as the ratio of the number of disclination bonds to the total number of lattice bonds (3 x 703
in the present case). The solid line is a guide to the eye.

as a function of their perimeter, and the monopole charge of the loops.

We simulated a system of size 70® (with periodic boundary conditions) for 5 x 106 Monte Carlo
steps (MCS) where one MCS corresponds to one cluster formation attempt and update of the spins
comprising the cluster. Every 200 MCS we measured the total number of disclination line segments
in the system and stored our data in a histogram. The logarithm of this histogram is shown in
Fig. 4.1 at the temperature T' = 1.1226 (temperatures measured in units of J/kp) where the two
wells have equal depth. The right—hand well corresponds to the isotropic phase (which we confirm by
monitoring the nematic order parameter) and the left—hand well with fewer disclination line segments
corresponds to the nematic phase. Varying the temperature by as little as 0.0001 yields wells of
unequal depths. In our earlier work [30] we used the cluster algorithm to compute a histogram of
the free energy (as a function of E = H .. /N, the energy per site). We found a double well structure

for the free energy with equal well depths occuring at the temperature 7' = 1.1226, which we then
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identified as Tvy. Thus, the appearance of equal well depths in the histogram for the density of

disclination line segments at the same temperature (to within our numerical accuracy) suggests that
disclinations play a crucial role at the NI transition.

To further assess the role played by disclination loops at the transition we followed the approach
used in Ref. [11] to study defect behavior at the three-dimensional XY transition, and calculated the
perimeter distribution function D(p) (the average number of loops with perimeter p). In Refs. [11]

D(p) was fit to the following form:

D(p) = A p~* exp(—¢(T)p/ksT), (4.3)

where ¢(T) is the effective vortex line tension which is non zero at low temperatures. Thus, in
the low temperature ordered phase vortex loops with large p are exponentially suppressed, and the
length scale Lo governing the typical perimeter size of the vortex loops is given by Lo = kgT'/e(T).
At the critical temperature T, of the XY model, ¢(T") vanishes continuously and the distribution
D(p) has a power—law form. Consequently there will be a finite probability of having vortex loops
which traverse the entire system and destroy the long-range order.

We computed D(p) at the NI transition temperature Ty = 1.1226 (identified by the two methods
described above) and at two slightly lower temperatures. The results are shown in Fig. (4.2). We
simulated the system for 5 x 10° MCS and computed D(p) every 200 MCS to make sure that the
successive configurations for bonds distribution are completely updated. Fitting our data to the form
Eq. (4.2) yields a = 2.50 & 0.05. For noninteracting loops (i.e. random walks) we expect a = 2.5
exactly, whereas a > 2.5 and a < 2.5 for repulsive and attractive loop interactions respectively [33].
Unfortunately, we cannot distinguish among these three possibilities in our data.

While the relative depths of the wells appearing in the histogram Fig. (4.1) are sensitive to
temperature variations as small as 0.0001 about Ty, the distribution D(p) is less sensitive. A plot
of D(p) at T = 1.1225, e.g., would be qualitatively similar to the appearance of D(p) at Ty, the
upper curve in Fig. (4.2). However, deeper in the nematic phase at 7' = 1.120 (where the isotropic

free energy well has disappeared) and T' = 1.10, the behavior of D(p) is different. Here one can
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Figure 4.2: Log-log plot of the disclination loop distribution function D(p) (Eq. (4.3)) in the
Lebwohl-Lasher model, Eq. (4.1) for system size 70° at temperatures: 7, = 1.1226 (top curve),
T = 1.120 (middle curve) and T = 1.10 (bottom curve).
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clearly see an exponential decay at large values of p and the data can be fit to the form given in
Eq. (4.3) with line tensions 0.003 and 0.026 at T' = 1.120 and T' = 1.10 respectively (these values
were computed setting a = 2.5).

The behavior of D(p) shown in Fig. (4.2) is consistent with a “blowout” of disclination loops at
the NI transition, similar to the behavior found in the three-dimensional XY model [11]. However,
as indicated in the previous paragraph, D(p) provides a less sensitive measure of the transition tem-
perature compared to the histogram of the disclination line segments. The source of this drawback
is the appearance of the bump at large perimeters in D(p) in the neighborhood of T which is
a finite—size effect, arising from the nonzero probability of forming loops which wrap completely
around the lattice due to the periodic boundary conditions. At high enough temperatures (in par-
ticular near the transition and above) there will be a sufficient number of disclination line segments
present to form such loops.

The value of a for these loops is predicted to be unity for noninteracting loops in three dimen-
sions [34]. The crossover in D(p) from infinite system behavior (with a ~ 2.5) to the finite system
behavior is expected to occur at a critical perimeter p.(L) =~ 1.5L2 /7 for a system of size L [34].
Our results are in very good agreement with this scenario as shown in Fig. (4.2). The truncation of
D(p) at very large perimeters occurs because there are not enough disclination line segments (since
we eliminated the previously marked ones) to construct loops with arbitrarily large perimeters. The
deviation from the expected a = 2.5 behavior for small p is due to the presence of the underlying
lattice structure of the LL model.

We attempted to measure the jump in the effective line tension € at Ty in the LL model which is
expected to occur because of the first order nature of the NI transition, in contrast to the continuous
vanishing of € observed in the XY model [11]. Naively one should compute D(p) for temperatures
in the vicinity of Ty and extract the line tension €(T) using Eq. (4.3) to fit the data. However, in
practice this procedure is very difficult to carry out because the NI transition is weakly first order
in the LL model and the jump in € must be determined from the behavior of loops with very large

perimeters. But loops with large perimeters wrap around the lattice as we described in the previous
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paragraph and thus appear in the “bump” region of Fig. (4.2) which cannot be fit with Eq. (4.3).

Another possibility would be to set the temperature to a value close to Tv 1, calculate the nematic
order parameter and then compute D(p) separately in the isotropic and nematic phases. In principle
the difference between the two distributions should give the jump in € at the given temperature.
However, again due to the very weak first order nature of the transition we found that each of
these distributions was qualitatively similar to the critical distribution shown in Fig. (4.2). Thus at
least for the systems sizes we have been able to study (less than or equal to 70%), we have found it
impossible to accurately measure the expected jump in the disclination line tension in the LL model.

To check our supposition that the disclination line tension should have a discontinuous jump at
the first order NI transition, we considered a modified LL model, including a fourth—order Legendre
polynomial Py, which has been shown to make the NI transition more strongly first order [26, 35].

The modified Hamiltonian is given by :

’HI:—J Z PQ(O'i‘U'j)_JI Z P4(0'z"0'j) (44)

<ij> <ij>
This modified LL model was studied in Ref. [26] for a system of size 24 with J'/J = 0.1. We
checked that the cluster algorithm produces free energy plots similar to those obtained in the latter
reference where the single flip Monte Carlo algorithm was used.

We were able to measure the jump in the line tension for a system of size 50° with J'/J = 0.3 as
shown in Fig. (4.3), finding a jump of approximately 0.0024 at the transition temperature T' = 1.2475.
Here we calculated D(p) separately in the isotropic and nematic phases, with a production run of
107 MCS. We have been unable to carry out a finite—size scaling analysis of the jump because one
has to choose the ratio J'/J large enough so that D(p) exhibits behavior consistent with the form of
Eq. (4.3) at large p in nematic phase; in particular with no “bump” as in Fig. (4.2). However, this
choice of J'/.J makes the transition more strongly first order and large systems can hardly overcome
the resulting large free energy barrier. We also measured a histogram of the density of disclination
line segments for the modified model and found behavior similar to that found in the LL model (see

Fig. 4.1), namely equal well depths for this quantity at the same temperature where the free energy
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Figure 4.3: Log-log plot of the disclination loop distribution function D(p) for the modified Lebwohl—
Lasher model, Eq. (4.4), at its NI transition temperature T = 1.2475. The system size is 50® and
the ratio of the couplings is J'/J = 0.3. The top curve (which has been displaced for the sake
of clarity) and the bottom curve correspond to the isotropic and nematic wells of the free energy
respectively. The jump in the disclination line tension is found to be 0.0024, and the straight portion
of the isotropic data can be fit with a power—law of 2.50 &+ 0.01 (see Eq. 4.3).

also exhibits two wells of equal depth.

As we discussed in Sec. 4.1, topological defects in nematics include not only disclination loops but
monopoles as well, and furthermore the disclination loops can potentially carry monopole charge.
To locate monopoles we used the prescription introduced by Berg and Liischer [36] for the two-
dimensional Heisenberg model which was subsequently extended by Lau and Dasgupta [12] to three
dimensions. Each of the six faces of a lattice cube is divided into two equal area triangles by the face
diagonal. The rotors 01,02 and o3 at the three corners of each of the triangles are mapped to points
on the order parameter sphere, forming spherical triangles. The area of each of the twelve spherical
triangles formed by this mapping is then computed, with a sign given by sgn(o1-(g2 X03)). The rotors
on each triangle are numbered so that the circuit 1 —+ 2 — 3 — 1 corresponds to a counterclockwise

rotation along the outward normal to the surface of the triangle. In performing this mapping we
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have assigned heads to the rotors such that the distance between the heads on the order parameter
sphere is minimized, i.e., we use the “geodesic rule” [37, 38, 39] to effectively minimize the energy.
For lattice cubes which are not pierced by disclination lines (and it is these cubes that we examine
for monopole charge), the heads of all eight rotors at the corners of a cube can be simultaneously
chosen to obey the geodesic rule without frustration. Thus, the angle between any pair of rotors
at the corners of any of the twelve triangles will no greater than 90°. Finally, the monopole charge
enclosed by the cube is given by the sum of the twelve signed areas of the spherical triangles divided
by 4x.

Using this algorithm we examined all lattice cubes which are not pierced by disclination lines
and found no monopoles, neither in the original LL model, Eq. (4.1), nor the modified model,
Eq. (4.4). We searched for monopoles in the neighborhood of Ty, deep in the nematic phase and
at very high temperatures; in all cases no monopoles were located. This null result is not surprising
given the topological arguments advanced by Hindmarsh [40] which yield a very low probability (of
order 108, compared with % for the Heisenberg model) for the appearance of point monopoles in a
nematic.

One way to measure the monopole charge of a disclination loop would be to apply the above
algorithm to the surface of a group of lattice cubes which completely enclose a disclination loop.
We have carried out this procedure for isolated loops of perimeter p = 4; none of these loops were
found to carry monopole charge. It is difficult to carry out this procedure for larger loops, especially
when two or more loops are entangled. In particular, when loops are entangled it is impossible to
impose the geodesic rule simultaneously on all pairs of rotors. If we surround one loop completely
with a set of lattice cubes, frustration will arise where the second loop pierces one of these lattice
cubes. Instead we measured the local rotation vector € of the four rotors surrounding each of the
segments which form a disclination loop, and then summed these vectors along the entire length of
the loop. If this sum is nearly zero, then the loop carries a nonzero monopole charge, because the set
of rotors surrounding the entire loop will cover essentially the entire order parameter sphere [42, 43].

A simple example of this topology occurs in the case of a pure wedge loop where Q is everywhere
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tangent to the loop [41], and summing this vector around the loop yields zero identically; a simple
example of a loop with zero monopole charge is a twist loop where € is everywhere perpendicular
to the plane of the loop. We measured the local rotation vector € of the four rotors o1,02,03,04
which lie at the corners of a lattice square pierced by a disclination line, by summing the vector

cross product of each neighboring pair of rotors [44]:

Q = (01 X 02) + (02 X 03) + (03 X 04) + (04 X (—0,)) (4.5)

In writing this definition of 2 we have chosen the heads of the rotors so that the neighboring pairs
01,02; 09,03 and 03,04 satisfy the “geodesic rule” on the order parameter sphere. The remaining
pair 04,01 will not satisfy this rule because of the presence of the disclination line segment; thus
we reflect oy in the last term in Eq. (4.5), so that the vector products always involve pairs of rotors
that satisfy the geodesic rule. To assign a unique sense to the circuit 1 - 2 -3 -4 = 1, we
arbitrarily assign a direction along the length of the disclination loop, and traverse the circuit in
a counterclockwise sense along this direction. We note that the reflection of o1 in the last term of
Eq. (4.5) guarantees that € is independent of which of the four rotors is labeled 1.

Our results for the vector sum of Q along each disclination loop are shown in Fig. (4.4) for
the LL model at its NI transition temperature Tx; = 1.12279 for a system of size 503. We use a
smaller system size because the computation of this vector sum must be done using scalar code,
whereas the cluster algorithm used above can be vectorized [30]. Similar results were obtained for
the modified LL model. We note that all of the large loops with perimeters p > 100 are characterized
by net rotation vectors which are nearly zero, suggesting that they carry nonzero monopole charge.
We expect on energetic grounds that this charge will be unity rather than higher values. We have
checked this supposition for a random sampling of loops finding that the rotation vectors cover a
great circle on the order parameter sphere just once. Our data indicates that small isolated loops do
not carry monopole charge. Rather the monopole charge is carried by large loops (with perimeters

greater than 100) and small loops which touch larger ones.
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Figure 4.4: The distribution of | ¥ €| /p, the magnitude of the vector sum of the rotation vector
Q, Eq. (4.5), along each disclination loop divided by its perimeter p, in the LL model of size 503
at Tny. The top curve includes loops of all perimeters, the middle curve includes loops of p = 4
only, while the bottom curve includes only loops with p > 100. The rightmost peak appearing in
the middle curve corresponds to isolated loops. Note that for a perfect wedge line segment piercing

a square face of a lattice cube (i.e., a rotor configuration of the form o = (cos ¢/2,sin ¢/2), where ¢
is the azimuthal angle of the lattice site), | & € | is given by 2v/2 ~ 2.8.

4.3 Summary and Conclusions

In this project we have studied the properties of topological defects in two lattice models of the
NI transition: the original Lebwohl-Lasher model (which exhibits a weakly first order transition)
and a modified model with a more strongly first order transition. We have found evidence for
the role played by disclination loops at the NI transition in both models. Namely, a histogram
of disclination line segments collected over the course of the MC simulation shows a double well
structure, and the wells are of equal depth at the same temperature where the free energy exhibits
similar structure. We also find that the distribution D(p) of disclination loops as a function of their
perimeter exhibits power—law behavior at this temperature, consistent with the “blowout” of loops
at the transition. However, D(p) is a less sensitive measure of the transition temperature compared
with the disclination segment histogram, due to finite size effects.

We have also searched for point monopoles in these models and measured the monopole charge

of the disclination loops. We found no point monopoles, a result that may be reasonable on the basis



57

of topological arguments [40]. However, we did find that nearly all of the large disclination loops
carry monopole charge, while small isolated loops do not. Of particular interest is the result that
the two models we studied, one with a weakly first-order transition and the other with a strongly
first—order transition, showed no qualitative differences in their defect characteristics, other than
the measurable jump in the disclination line tension in the latter model. In light of the results of
Ref. [19] we find the similarities in the defect characteristics of the models we studied somewhat
surprising. In Ref. [19] it was shown that suppressing disclination loops while leaving monopoles
yields a more continuous NI transition. One might guess then that moving in the opposite direction
to a model like that given in Eq. (4.4) which exhibits a strongly first—order transition one would
find fewer monopole-like entities than in the LL model with its weakly first—order transition. While
neither model has point monopoles, both appear to have similar densities of disclination loops with
monopole charge, suggesting that monopole charge may not influence the strength of the first—order
transition. We should also note that while our results suggest that disclination loops “blowout” at
the NI transition in both models we considered, it is not clear from our study whether the transition
is in fact defect—driven, or rather that some other mechanism drives the transition and the defects
simply respond. Clearly more work on this very intriguing phase transition and the role played by

topological defects would be of considerable interest.
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Chapter 5

Coarsening Dynamics of Biaxial

Nematic Liquid Crystals

In this chapter we study the coarsening dynamics of two and three dimensional biaxial nematic
liquid crystals, using Langevin dynamics. Unlike previous work, we use a model with no a priori
relationship among the three elastic constants associated with director deformations. We find a rich
variety of coarsening behavior, including the simultaneous decay of nearly equal populations of the
three classes of half-integer disclination lines. The behavior we observed can be understood on the

basis of the relative values of the elastic constants and the resulting decay channels of the defects.

5.1 Role of topological defects in coarsening dynamics

Topological defects play an important role in the equilibration process following a quench from a
disordered to an ordered phase (“coarsening dynamics”). Coarsening dynamics in nematic liquid
crystals, particularly with uniaxial ordering, has been the subject of much active investigation in
recent years in theory, experiments and simulations [1, 2, 3, 4], in part because of the rich defect
structure of liquid crystals. On the other hand, relatively little attention (with the exception of the

two—dimensional work of Ref. [2] has been paid to coarsening dynamics in biaxial liquid crystals, in
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3 b)

Figure 5.1: (a) Schematic illustration of a % disclination line for biaxial nematics. Two directors

rotate by 180° around the core of the line and the third one stays undistorted. (b) A disclination
line of strength 1 is shown, where two out of three directors are rotated by 360°.

part because of the dearth of experimental realizations of biaxial liquid crystalline phases. However,
biaxial nematics have many unusual topological features, which might be expected to influence their
coarsening dynamics and thus warrant study. Biaxial nematics differ from their uniaxial counterparts
in that they possess four topologically distinct classes of line defects (disclinations), while possessing
no stable point defects (except in two dimensions where the line defects reduce to points) [5, 6]. The
order parameter space for the objects with rectangular symmetry is R = SO(3)/D5.

The classes of disclination lines are distinguished by the rotation of the long and short axes of the
rectangular building blocks of the system. In the first three classes one of the three axes is uniformly
ordered, while the remaining two axes rotate by 180° about the core of the defect as illustrated
on Fig. (5.1a). The fourth class consists of 360° rotations of two of the three axes. The example
of such a configuration is shown on Fig. (5.1b). The disclination lines form closed loops in three
dimensions (with a single defect class per loop) or form a network where three lines, each from a
different class meet at junction points [7]. The fundamental homotopy group of biaxial nematics is
non—Abelian leading to a number of interesting consequences. E.g., the merging of two defects will
depend on the path they follow, and two 180° disclinations of different types will be connected by a

360° “umbilical” cord after crossing each other [8].
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5.2 Free Energy for Biaxial Nematic Liquid Crystals

Zapotocky et al. [2] studied coarsening dynamics in a two—dimensional model of biaxial nematics,
utilizing a cell-dynamical scheme applied to a Landau-Ginzburg model, where the gradient portion
of the energy was given by:

Fyrat = 5 M(00Q5,) (00 Q1). (51)

Here M is a coupling constant, and (), is the symmetric-traceless nematic order parameter tensor.
Repeated indices are summed over; in the case of a two—dimensional nematic, « is summed over
z and y, while 8 and 7 are summed over z,y and z. Zapotocky et al. found that of the four
topologically distinct classes of disclinations, only two classes (both corresponding to “half-integer”
lines, i.e., 180° rotations) were present in large numbers at late times. Subsequently, Kobdaj and
Thomas [9] showed within this one-elastic constant approximation that one class of half-integer
disclinations is always energetically unstable towards dissociation into disclinations of the other two
half-integer classes.

In this chapter we show that if one considers a more general gradient energy the coarsening
dynamics of biaxial nematics is much richer than what occurs with the above simple model. In
particular, with appropriate sets of parameters one can obtain a coarsening sequence with all three
classes of half-integer disclinations present in nearly equal numbers even at late times, or a sequence
with only one class of half-integer disclinations surviving until late times. When all three classes
are present, the topology of the coarsening sequence in three dimensions is markedly different from
the uniaxial case.

To understand why the model free energy of Eq. (5.1) is not general enough for coarsening studies,
it is helpful to see what it yields for the director elastic constants. For biaxial nematics there are
three directors which form an orthonormal triad of vectors u, v, w describing the alignment of the
constituent “brick-like” molecules (see Fig. 5.2). The tensor (o3 can be written in terms of the

orthonormal triad as:

1
Qup = S(waws — 5(5(15) + T(uqug — vaVg), (5.2)
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where S and T are respectively the uniaxial and biaxial order parameters. If we insert Eq. (5.2) into

Eq. (5.1), we find [10]:

Fpraa = Kuu-Vv-w)?2+(v-Vv-w)?+ (w-Vw-v)?]
+ Ky [(v-Vw-u)?+ (u-Vu-w)? + (w-Vw-u)?]

+ Ky[(w-Vu-v)2+(u-Vu-v)?+ (v-Vv-u)?], (5.3)

where

K, = 2M(S+T)?
K, = 2M(S-T)?

K, = 8MT? (5.4)

Thus, there are three elastic constants K, K, K,,, each corresponding to one of the three classes of
line defects. Each class corresponds to rotations of two of the three vector fields u, v, w, about the
defect core, with the third vector of the triad undistorted. We denote the classes as follows [6, 7]:
C\ (u undistorted), Cy, (w undistorted), and C, (v undistorted). The energy of a defect in class C;,
i = u,v,w is proportional to the elastic constant K;. Note, however, that in the model specified by
Eq. (5.1) only two of the three elastic constants are independent, as they are related as indicated in
Eq. (5.4). In fact, the specific relationship among the three elastic constants gives rise, as shown in
Ref. [9], to the presence of only two defect classes at late times. Irrespective of the values of S and
T (M simply sets the overall scale of all three elastic constants), one of the three elastic constants
is always greater than the other two, yielding a decay channel for the defect in the class with the
largest elastic constant.

There is no symmetry reason to restrict our attention to the model free energy, Eq. (5.1). Even if
we neglect the elastic anisotropy associated with bend, splay and twist distortions, a biaxial nematic

should be described in general by three independent elastic constants, K,, K, and K, [10]. In
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Figure 5.2: Two nearest neighbor rectangular blocks are illustrated with main symmetry axes being
u, v, w. The biaxial phase is characterized by long range order in all three axes.

terms of the order parameter tensor ()og, this requires a term of third order in Fyyqq4:

Firad = 3M(0@37)(0aQ5) + LQas (0, Q) (0,52 (53)

which upon substituting Eq. (5.2) yields the elastic constants:

K, = 2(M(S+T)+LST)(S+T)
K, = 2(M(S-T)-LST)(S-T)

K, = 40M —LT)T? (5.6)

Because of the extra coupling constant L, there is no predetermined hierarchy among these elastic
constants. Unlike the model of Eq. (5.1) it is now possible with appropriate choices of S,T and the
ratio L/M to have all three elastic constants equal (which will give rise as we demonstrate below
to a coarsening sequence with nearly equal populations of the three classes of half-integer defects),
or have one constant smaller than the remaining two, yielding a coarsening sequence with only one

class of defects at late times, or recover the behavior seen in Ref. [2].

5.3 Simulation Results

To simulate the coarsening dynamics of this general model of biaxial nematics, we consider its lattice

analog introduced by Straley [11]. In this model the interaction between two biaxial objects located
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at sites ¢ and j of a cubic lattice with orientations specified by the orthonormal triad u,v,w (see

Fig. 5.2) is given by:

Uij = —gﬂ(Wi -wj)? = 29[(wi - w5)? = (vi - vy)

N S

[(ui . Uj)2 + (vi ‘Vj)2 - (w 'Vj)2 = (vi- uj)z]- (5.7)

This model has a phase diagram with two uniaxial phases, one with rodlike nematic order (alignment
of the w vector field), one with discotic order (alignment of the u vector field) and a biaxial phase
with alignment of all three vector fields [11, 12, 13].

The elastic constants emerging from Eq. (5.7) can be determined by considering the interaction
between two objects which are aligned in turn along each of the three directions u,v,w, with the

results:

35 1)
K, = 22 _9y42
u B T+ 35
36
K, = —+2 —
v 2"‘ ’Y+2
Ky, = 26 (5.8)

As in the continuum model Eq. (5.3), the parameters 8, and § give rise to three independent elastic
constants. Stability requires that 38 + 0 > 4|vy|, and 3,6 > 0.

We have simulated the coarsening dynamics associated with Eq. (5.7) using Langevin dynamics,
expressing the three unit vectors w, u and v in terms of Euler angles ¢, 8 and 1. The equations of

motion are given by :

0¢; oU
Jdcosb; oUu
¢ ot ~ cos 0; + Ro(t)
oY B oU
¢ % 901 + Ry (t) (5.9)

where U is the sum of U;; over the nearest-neighbors of site 4, ¢ is a damping coefficient and
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R4(t), Ry(t) and Ry (t) are uncorrelated random thermal noise sources. Each of the random variables
R has a Gaussian distribution of variance 2kpT'(/dt where kp, T' and §t are Boltzmann’s constant,
the temperature and the time step respectively. We measured time in units of 8 (choosing ¢ = 1),
and used a timestep ¢t = 0.0005. A dynamical equation for cos € rather than € must be used in
order to reach the correct equilibrium states [14]. We verified that our dynamical equations led to
the same phase diagram produced by Monte Carlo simulations [12, 13].

As in previous numerical studies of defect behavior [15, 16], we introduce a disclination line

segment, counting operator,

ik = %[1 — sgn{(w, - w;)(w; - wg) (W - W) (w; - w;) }] (5.10)
which is unity if a disclination line segment pierces the lattice square defined by the four vectors
w;, W, Wi and w;. We define analogous operators D;‘jkl and ijkl for the u and v vectors on this
lattice square. In principle either two or none of the three operators should be unity for a given
square, and thus we can assign the line segment to one of the classes C,, C, or C. In practice,
we found a small number of squares where only one or all three operators were unity, an artifact of
the discreteness of the underlying lattice. We obtained physically reasonable results by classifying
the defects on the basis of the operators Dy, and D}, , assuming that D7, was unity only if one
of the two former operators was unity. This procedure always yielded closed defect loops in three
dimensions, a reasonable test of our algorithm. We determined the location of the integer—valued
defects where either w or u (or both) rotate by £360° degrees using the algorithm of Ref. [4] which
provides an upper bound on these defects. We found very few integer—valued defects using this
method, so a more accurate algorithm is not needed.

We quenched the system instantaneously from an initial configuration of random orientations of
the three vectors u,v,w (i.e., a high temperature state) to zero temperature (a biaxially ordered
state for all § # 0), and then let the system evolve in time according to the dynamical equations (5.9)
monitoring the defect populations both visually and statistically. We studied the model in both two

and three dimensions.
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Figure 5.3: Log-log plot of the total line length of C, (0),C, (O), and C, (A) class defects for
system size 40%, and parameters v = 1/2, § = 4y2/3 = 1/3, as a function of time after the quench.
The data has been averaged over 60 initial random configurations.
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Figure 5.4: Log-log plot of the total number of vortices of C, (0),C, (O), and C,, (A) class defects
for system size 1962, and parameters v = 1/2, § = 4v2/3 = 1/3, as a function of time after the
quench. The data has been averaged over 80 initial random configurations.
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In agreement with our arguments above regarding the elastic constants, we found three quali-
tatively distinct types of coarsening behavior depending on the values of v and § (we set g = 1).
For § <« 1, and ~ satisfying the stability requirement given after Eq. (5.8) defects of class C,, are
energetically favorable compared to those of the other classes, and thus only these former defects
survive until late times. For larger values of 4, but still less than 2y (with v > 0) we found defects
belonging only to classes C, and C,,, consistent with Egs. (5.8), namely, K, > K, + K, and the
results of Ref. [2]. This regime also includes the parameterization of Eq. (5.2) used in Refs. [12, 13],
where § = 472 /3 was chosen. In Fig. (5.4) we show the total number of vortices in two dimensional
system as a function of time after the quench. These results are similar to those obtained in Ref. [2].
In Fig. (5.3) we show the total line length of defects in each of three classes as a function of time
after the quench in three dimensions. In Fig. (5.5) we show a snapshot of the simulation cell late
in the coarsening sequence. The C, class defects have disappeared and the C, and C,, class defects
remain as nonintersecting closed loops. When v < 0 and § < 2|y|, we have K,, > K, + K,,, and we
found, consistent with this inequality, only defects of classes C, and C,, at late times. We found no
apparent line crossings, entanglements or junction points (the latter obviously would require three
classes of defects). The two classes of loops appear to coarsen independently, as can be seen in the
animations on our web site [17].

The most interesting and novel coarsening sequence occurs when v = 0 and § = 1. For these
parameters Eq. (5.8) implies that all three elastic constants are equal, and we found a coarsening
sequence with nearly equal populations of the three defects. This behavior persists over a range of
parameters § ~ 1+ 0.5 and 7 ~ 0+ 0.2. In Fig. (5.8) we show the total number of vortices of each
class in two dimensional system. Note the appearance of all three defect classes at late time after
the quench. The coarsening sequence for these parameter values is particularly interesting in three
dimensions. Soon after the quench a uniform network of junction points where three disclination
lines (one from each of the three half-integer classes) meet is formed. These junction points are
illustrated in Fig. (5.6) at late times after the quench.

The junction points are distributed in a nearly uniform fashion throughout the simulation cell,
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. iy

Figure 5.5: The configuration of C, (thin line) and C,, (bold line) class defects for system size 402,
and parameters v = 1/2, § = 4y?/3 = 1/3, at dimensionless time 80 after the quench. Note that
all C, class defects have vanished at this late time, therefore C',, and ', form nonintersecting loops
which coarsen independently.
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Figure 5.6: The configuration of C, (thin line), C, (dotted line), and C,, (bold line), class defects
for system size 40%, and parameters v = 0, § = 1, at dimensionless time 60 after the quench.
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Figure 5.7: Log-log plot of the total line length of C,, (o), C, (O), and C,, (A) class defects for system
size 603, and parameters v = 0, § = 1, as a function of dimensionless time after the quench. The
data has been averaged over 40 initial random configurations. While in principle the population of
the three classes of defects should be equal immediately after the quench, there is a small difference
in these populations due to the numerical issues discussed in the text following Eq. (5.10).

and the distance between neighboring points grows on average with time [17]. The total line length
of each of the three classes are nearly equal throughout the coarsening process (see Figs. 5.7).
When the distance between neighboring junction points becomes comparable with the size of
the simulation cell (see Fig. 5.6), the coarsening process is impeded. The final annihilation of the
disclination lines can only occur via the shrinkage of individual loops. The formation of loops requires
that some pairs of neighboring junction points approach each other, shrinking the line joining them
while possibly increasing the length of the other two disclination lines attached to the pair of junction
points. Ultimately, the pair of junction points meet at a “pinch point”, where four disclination line

segments corresponding to two defect classes meet. Subsequently the four line segments dissociate
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Figure 5.8: Log-log plot of the total number of vortices of C,, (o), Cy (O), and Cy, (A) class defects
for system size 2562, and parameters v = 0, § = 1, as a function of dimensionless time after the
quench. The data has been averaged over 60 initial random configurations. While in principle the
population of the three classes of defects should be equal immediately after the quench, there is

a small difference in these populations due to the numerical issues discussed in the text following
Eq. (5.10).
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into two nonintersecting single class line segments as can be seen in our animations [17]. When this
process has occured a sufficient number of times, individual disclination loops are formed which then
shrink independently.

In conclusion, we have shown that the coarsening dynamics of biaxial nematics is very rich, with
late time behavior governed by either one, two or three classes of half—integer line defects, depending
on the parameters of the system. When all three classes are present, a network of junction points is

formed and a novel coarsening sequence occurs.
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Chapter 6

Summary and Future Directions

In this Thesis we have presented the results of simulation studies of nematic liquid crystals using
Monte Carlo and molecular dynamics techniques.

In collaboration with Gregor Skacej and Professor S. Zumer at University of Ljubljana we in-
vestigated the problem of anchoring at a free surface of a nematic liquid crystal using Monte Carlo
simulations. To estimate the corresponding extrapolation length, we impose a bend deformation in
a hybrid cell-like nematic sample. The simulation is based on a simple hexagonal lattice model with
nematic particles interacting via the spatially anisotropic modified induced dipole-induced potential.
We measured the extrapolation length and compared our approach with the experiment.

Even more challenging are off-lattice simulations of a liquid crystalline systems. We have chosen a
fluid of Gay—Berne particles to study the defects structure and their time evolution. Fluid simulations
will allow us ultimately to study the effects of hydrodynamics on dynamics of defects and investigate
the variety of defects in smectics, including dislocations and focal conics. We have developed a
method to track monopoles in off-lattice models. It works as follows. First generate a Delaney
triangulation of the system of Gay—Berne particles which creates a network of tetrahedra filling the
MD cell. Next choose a sphere at an arbitrary point and construct a surface of outward laying
faces of inner tetrahedras similar to the surface of a soccer ball. Then compute the signed areas of

the spherical triangles on the order parameter sphere which are mapped from the directors on the
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surface triangles of the collection of tetrahedra and calculate the integer monopole charge. We have
successfully tested the algorithm on a large systems with artificial monopole configuration inserted.
The ideas involved in this approach will also serve as a basis for how we plan to locate screw and

edge dislocations in smectics.



