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Motivation for investigation of slip phenomena at liquid/solid interfaces

• Navier model: slip velocity is proportional to shear rate via 
the slip length.  Very important in micro- and nanofluidics 
and tribology.  Slip length Ls as a function of shear rate:

Thompson and Troian, Nature (1997).
Priezjev, Phys. Rev. E (2007)  Linear & nonlinear dependence.

• Degree of slip depends on the structure of the first fluid layer 
in contact with the periodic surface potential.
Thompson and Robbins, Phys. Rev. A 41, 6830 (1990).
Barrat and Bocquet, Faraday Disc. 112, 109 (1999).
Priezjev, Phys. Rev. E 82, 051603 (2010).

• Polymer chain architecture:  slip velocity is reduced for 
liquids which consist of molecules that can easily conform 
their atoms into low-energy sites of the substrate potential.
Vadakkepatt, Dong, Lichter, Martini, Phys. Rev. E (2011).
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Fluid monomer density:  = 0.91  3

Weak wall-fluid interactions: wf = 0.8 
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Molecular dynamics simulations: polymer melt with chains N=20 beads
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Density and velocity profiles for different chain stiffness coefficients k
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c = contact density decreases with U

Shear rate  = slope of the velocity profiles
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Flexible chains

Stiffer chains

• Layering near the walls is more 
pronounced for stiffer chains. • Surprisingly, slip velocity for stiff 

chains is larger (smaller) for lower  
(higher) upper wall speed U. 

γ

• Stiffer chains: residual order in 
shear flow due chain orientation.



Friction coefficient: k =  / LsN.V. Priezjev, J. Chem. Phys. 136, 224702 (2012).
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• Local minimum in Ls
is related to shear-
thinning and friction. 

Priezjev, Phys. Rev. E (2010).

• Unexpectedly, incre-
asing chain stiffness 
produces larger slip 
lengths at low shear 
rates but smaller Ls at 
high shear rates.

Flexible chains

Stiffer chains

=  shear rate

chain stiffness

Dependence of the slip length Ls on the chain stiffness coefficient k

Ls =  / k 
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When               the
friction coefficient 
is independent of 
the chain stiffness.

 11 VV

N.V. Priezjev, J. Chem. Phys. 136, 224702 (2012).

Local maximum in
friction for stiffer 
chains: shear-
induced alignment 
of chain segments. 

chain stiffness

Friction coefficient at polymer-solid interface k as a function of slip velocity V1
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Friction
coefficient:
k =  / Ls
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Structure factor in the first fluid layer:
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Nseg = average number of consecutive 
monomers per chain in the first layer 

 = average bond orientation

• Shear-induced alignment of
semiflexible chain segments.
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Fluid structure in the first layer near the wall as a function of slip velocity V1



Analysis of the fluid structure in the first layer near the solid wall

Structure factor in the first fluid layer:

The amplitude of density oscillations ρc
is reduced at higher slip velocities Vs
(by about 10%).

Fluid density profiles near the solid wall:

c = contact density (max first fluid peak)

1st fluid layer

Liquid-solid interface
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Sharp peaks in the structure factor (due
to periodic surface potential) are reduced
at higher slip velocities Vs
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N.V. Priezjev, Phys. Rev. E 82, 051603 (2010).



1 10 50

S(0) [S(G1)ρ
c
σ3]−1

0.1

1

4

k-1
[σ

4 /ε
τ]

kθ = 0.0ε

kθ = 2.0ε
kθ = 2.5ε
kθ = 3.0ε
kθ = 3.5ε

kθ = 0.5ε
kθ = 1.0ε
kθ = 1.5ε

Slope = 1.13
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structure factor

Friction coefficient k
at the polymer-solid 
interface correlates 
well with the struc-
ture of the first fluid 
layer near the solid 
wall.
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Correlation between k and fluid structure in the first layer near the solid wall

Friction
coefficient:
k =  / Ls



Conclusions:

• Nonlinear shear rate dependence of the slip length is determined by the ratio of the
shear-rate-dependent polymer viscosity and the dynamic friction coefficient. 

• Stiff chains: large slip length at low shear rates and almost no-slip at higher rates. 

• A strong correlation between the friction coefficient and fluid structure in the first layer 
near the solid wall.

• The friction coefficient at small slip velocities exhibits a distinct maximum which 
appears due to shear-induced alignment of semiflexible chain segments in contact with 
solid walls.
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Friction coefficient: k =  / Ls
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k = k [S(G1)ρc]

Ls =  / k 


