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Motivation for investigation of slip phenomena at liquid/solid interfaces

. Navie.r model: slip Ve!ocity 1s pr.opor.tional to shear ra‘Fe yia Top wall velocity U
the slip length. Very important in micro- and nanofluidics >
and tribology. Slip length L as a function of shear rate: i >’
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in contact with the periodic surface potential.
Thompson and Robbins, Phys. Rev. A 41, 6830 (1990). NaVi.er. slip
Barrat and Bocquet, Faraday Disc. 112, 109 (1999). condition
Priezjev, Phys. Rev. E 82, 051603 (2010).

« Polymer chain architecture: slip velocity is reduced for
liquids which consist of molecules that can easily conform
their atoms into low-energy sites of the substrate potential.

Vadakkepatt, Dong, Lichter, Martini, Phys. Rev. E (2011).

Molecular Dynamics simulations
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Molecular dynamics simulations: polymer melt with chains N=20 beads

Lennard-Jones
potential:
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o spring model: k=30es 2 and r =156

Fluid monomer density: p=0.91 ¢ 3

Bending 'y, (9) =k, (1-cos8)

Top wall velocity U potential:

> chain stiffness: k, =2.5¢
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f, = Gaussian random force

Langevin thermostat: T=1.1¢/k,

FCC walls with density p,, = 1.40 ¢ 3

Weak wall-fluid interactions: €,s= 0.8 €



Density and velocity profiles for different chain stiffness coefficients k

O = contact density decreases with U
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Lower stationary wall

» Layering near the walls is more
pronounced for stiffer chains.

» Stiffer chains: residual order in

shear flow due chain orientation.
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Shear rate Y = slope of the velocity profiles

 Surprisingly, slip velocity for stiff
chains is larger (smaller) for lower
(higher) upper wall speed U.
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Dependence of the slip length L on the chain stiffness coefficient k,
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N.V. Priezjev, J. Chem. Phys. 136, 224702 (2012). Friction coefficient: K = p/ Lg
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Friction coefficient at polymer-solid interface k as a function of slip velocity V,
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When V, >V," the
friction coefficient
1s independent of

the chain stiffness.

Local maximum in
friction for stiffer
chains: shear-
induced alignment
of chain segments.
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Fluid structure in the first layer near the wall as a function of slip velocity V,

| Structure factor in the first fluid layer: >
|

- * Shear-induced alignment of
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Analysis of the fluid structure in the first layer near the solid wall

Fluid density profiles near the solid wall:
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Liquid-solid interface

P = contact density (max first fluid peak)

The amplitude of density oscillations p,

is reduced at higher slip velocities V
(by about 10%).

Structure factor in the first fluid layer:
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Sharp peaks in the structure factor (due
to periodic surface potential) are reduced
at higher slip velocities Vg

N.V. Priezjev, Phys. Rev. E 82, 051603 (2010).



Correlation between k and fluid structure in the first layer near the solid wall

In-plane structure factor:
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lattice vector contact density N.V. Priezjev, J. Chem. Phys.
136, 224702 (2012).
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Conclusions: NSF (CBET-1033662)

Nonlinear shear rate dependence of the slip length 1s determined by the ratio of the
shear-rate-dependent polymer viscosity and the dynamic friction coefficient. | _ u/k
S

Stiff chains: large slip length at low shear rates and almost no-slip at higher rates.

A strong correlation between the friction coefficient and fluid structure in the first layer
near the solid wall. | — | [S(G))p.]
C

The friction coefficient at small slip velocities exhibits a distinct maximum which
appears due to shear-induced alignment of semiflexible chain segments in contact with
solid walls.

Friction coefficient: K = p/ Lg
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