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Motivation for investigation of slip phenomena at liquid/solid interfaces

• Navier model states that slip velocity is proportional to the 
rate of shear. How does it work for time periodic flows? 
Slip length Ls as a function of shear rate in steady flows:

Thompson and Troian, Nature (1997)
Priezjev, Phys. Rev. E (2007)  Linear & nonlinear dependence

Ls

h liquid

solid wall

Top wall velocity U

slip γV sL Navier slip 
condition

• Oscillatory flows with slip boundary conditions:

Experimental studies with quartz crystal microbalance:
Ferrante, Kipling, Thompson, J. Appl. Phys. (1994) 
Ellis and Hayward, J. Appl. Phys. (2003)
Willmott and Tallon, Phys. Rev. E (2007)

Hydrodynamic predictions for oscillatory Couette flows:
Matthews and Hill, Microfluid. Nanofluid. (2009)
Khaled and Vafai, Int. J. Nonlinear. Mech. (2004)

Molecular dynamics simulations in the Couette geometry:
Hansen and Ottesen, Microfluid. Nanofluid. (2006)
Thalakkottor and Mohseni, arXiv:1207.7090 (2012)
(phase difference between wall and fluid slip velocities
leading to a hysteresis loop)

5.0)/1()(  c
o
ss LL    

),,,( 21 LLzu 

)()( tutu fluidsolid  



-10

-5

0

5

10

σ /
z

Details of molecular dynamics simulations

Fluid monomer density:  = 0.81  3

FCC walls with density w = 2.73  3

Wall-fluid interaction: wf =  and wf = 
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Stationary lower wall (finite slip length)
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Oscillation frequency:  = 0.1, 0.01, 0.001,
and 0.0001
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Part I: Velocity and density profiles in steady-state shear flows
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The slip length increases almost linearly with shear rate.

= slip velocity

slip velocity = 

N.V. Priezjev, Phys. Rev. E 75, 051605 (2007).
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Stokes
layer:
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

  3.7
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Dashed
red lines:
best fit to
continuum
solution
with L1, L2

Part II: Velocity profiles in oscillatory flows: phase and frequency
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Part II: Velocity profiles in oscillatory flows: phase and frequency

Lower stationary wall Upper oscillating wall
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Part II: Velocity profiles in oscillatory flows: phase and frequency

Lower stationary wall Upper oscillating wall
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Part II: Velocity profiles in oscillatory flows: phase and frequency

Lower stationary wall Upper oscillating wall
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Quasi-steady flows and the velocity profiles are nearly linear throughout the channel.
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Steady-state vs. oscillatory flows: slip length Ls as a function of shear rate
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Black squares (□) = steady-state

Blue circles (○) = Ls at the stationary lower wall Red diamonds (◊) = Ls at the oscillatory upper wall

The shear rate dependence of the slip length obtained in steady-state shear flows is 
recovered when the slip length in oscillatory flows is plotted as a function of the local shear 
rate magnitude.  Discrepancy at high frequencies and amplitudes. Scattered data at small U.
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Slip length vs. shear rate        friction coefficient vs. slip velocity
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• The estimate of shear rate and Ls directly from the MD velocity profiles is not precise 
because of the nonlinearity of the velocity profiles near interfaces and the ambiguity in 
choosing the size of the fitting region.

• Instead, one can compute the friction coefficient as a function of slip velocity:

• The friction coefficient at the liquid-solid interface k(us) obtained in steady shear flows 
agrees very well with the friction coefficient in oscillatory flows.       Fluid structure?
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Analysis of the fluid structure in the first layer near the solid wall

Structure factor in the first fluid layer:

The amplitude of density oscillations ρc
is reduced at higher slip velocities us
(by about 10%).

Fluid density profiles near the solid wall:

c = contact density (max first fluid peak)

1st fluid layer

Liquid-solid interface
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Sharp peaks in the structure factor (due
to periodic surface potential) are reduced
at higher slip velocities us
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N.V. Priezjev, Phys. Rev. E 82, 051603 (2010)
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Steady-state and oscillatory flows: friction coefficient vs. fluid structure
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• The friction coefficient and induced fluid structure decrease at higher slip velocities.

• For both types of flows, the friction coefficient at the liquid-solid interface correlates 
well with the structure of the first fluid layer near the solid wall.

Black squares (□) = steady-state

Blue circles (○) = Ls at the stationary lower wall Red diamonds (◊) = Ls at the oscillatory upper wall



Important conclusions

http://www.egr.msu.edu/~priezjev Michigan State University

• Steady-state shear flow: The slip length increases almost linearly with shear rate for  
sufficiently strong wall-fluid interactions and incommensurate structures of the liquid 
and solid phases at the interface.     N.V. Priezjev, Phys. Rev. E 75, 051605 (2007).

• Time-periodic oscillatory flows: velocity profiles in oscillatory flows are well described
by the continuum solution with the slip length that depends on the local shear rate. 

• Interestingly, the rate dependence of the slip length obtained in steady shear flows is 
recovered when the slip length in oscillatory flows is plotted as a function of the local 
shear rate magnitude.

• For both types of flows, the friction coefficient at the liquid-solid interface correlates 
well with the structure of the first fluid layer near the solid wall.

N. V. Priezjev, “Molecular dynamics simulations of oscillatory Couette flows with slip 
boundary conditions”, Microfluidics and Nanofluidics 14, 225 (2013). 


