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Motivation for investigation of slip phenomena at liquid/solid interfaces

• What is the proper boundary condition for liquid-on-solid 
flows in the presence of slip? 
Still no fundamental understanding of slip or what is proper   
boundary condition for continuum modeling. Issue is very   
important in microfluidics and nanofluidics.
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• Effective slip in flows over anisotropic textured surfaces
O. Vinogradova and A. Belyaev, “Wetting, roughness and  
flow boundary conditions”, J. Phys.: Condens. Matter 23, 
184104 (2011).
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Details of molecular dynamics simulations

Fluid monomer density:  = 0.81  3

Thermal FCC walls with density w = 2.3  3

Wall-fluid interaction: wf =  and wf = 

Lennard-Jones 
potential:

• Thermostat to thermal walls only! 
Langevin thermostat applied to fluid
introduces a bias in flow profiles 
near patterned walls for 0 <  < 90

xm Friction term:
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Part I: Flow over periodic stripes; longitudinal and transverse velocity profiles
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• Eq.(1)

continuum prediction (red curves).
Bazant and Vinogradova, 
J. Fluid Mech. 613, 125 (2008).



Slip length as a function of angle  between flow orientation U and stripes

• For stripe widths a  30 MD 
recovers continuum results for
flows either  || or to stripes.
Priezjev, Darhuber and Troian, 
Phys. Rev. E 71, 041608 (2005).
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Flat FCC stationary
lower wall plane:
U=upper wall speed.

• For stripe widths  a / = O(10) 
MD reproduces slip lengths for
anisotropic flows over an array
of parallel stripes, see Eq.(1).
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Ratio of transverse and longitudinal components of slip velocity us versus 
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Flat FCC stationary
lower wall plane:
U=upper wall speed
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Continuum prediction (red curves)

us = slip velocity

• For stripe widths  a / = O(10) 
MD qualitatively reproduces 
the ratio of transverse and
longitudinal components of 
the apparent slip velocity us

su
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A correlation between interfacial diffusion coefficient D and slip length Ls 
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Bazant and Vinogradova,
J. Fluid Mech. 613, 125 (2008).

Microscopic justification of the tensor formulation of the 
effective slip boundary conditions: interfacial diffusion 
coefficient D correlates well with the effective slip length 
as a function of the shear flow direction U.
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Flow over parallel stripes:
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Part II: Slip flow over flat surfaces with random nanoscale textures

 = areal fraction of wetting (δ = 1.0) lower wall atoms
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Additive friction from wetting 
and nonwetting areas:
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1 -  = fraction of nonwetting (δ = 0.1) lower wall atoms

Wall-fluid 
interaction:

• Slip length is isotropic
(finite size effects). 

• The variation of  Ls  is
determined by the
total area of wetting
regions.

Homogeneous
nonwetting wall

Homogeneous
wetting wall

x
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A correlation between interfacial diffusion coefficient Dxy and slip length Ls 

 = 1.0U = 0

 = areal fraction of wetting (δ = 1.0) wall atoms

1 -  = fraction of nonwetting (δ = 0.1) wall atoms

• When  > 0.6, the slip
length Ls  is proportional
to the interfacial diffusion
coefficient of fluid mono-
mers in contact with wall.
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Important conclusions

http://www.egr.msu.edu/~priezjev Michigan State University

• Good agreement between MD and hydrodynamic results for anisotropic flows over 
periodically textured surfaces provided length scales  O(10 molecular diameters).

• Microscopic justification of the tensor formulation of the effective slip boundary 
conditions: interfacial diffusion coefficient  D correlates well with the effective slip 
length as a function of the shear flow direction.

• In case of random surface textures, the effective slip length is determined by the total 
area of wetting regions. When  > 0.6, Ls  is linearly proportional to the interfacial 
diffusion coefficient of fluid monomers in contact with periodic surface potential.
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