The effect of cryogenic thermal cycling on potential energy states and mechanical properties of metallic glasses

Nikolai V. Priezjev
Department of Mechanical and Materials Engineering
Wright State University

Movies, preprints @
http://www.wright.edu/~nikolai.priezjev/

Thermal treatment and mechanical cycling of metallic glasses

Metallic glasses: mechanical properties include high strength and low ductility

Rejuvenated states offer improvements in plasticity, while relaxed states exhibit high yield stress and greater chemical stability.

Periodic shear: yielding transition, relaxation dynamics, failure mechanism, nonaffine motion

“Mechanical annealing” during sub-yield cycling

Thermal loading: aging or rejuvenation, structural relaxation, ductile vs brittle fracture (??)

Details of molecular dynamics simulations and parameter values

Binary Lennard-Jones Kob-Andersen mixture:

\[V_{LJ}(r) = 4\varepsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^{6} \right] \]

Parameters for \(\alpha, \beta = A \) and \(B \) particles:

\[\varepsilon_{AA} = 1.0, \quad \varepsilon_{AB} = 1.5, \quad \varepsilon_{BB} = 0.5, \quad m_A = m_B \]
\[\sigma_{AA} = 1.0, \quad \sigma_{AB} = 0.8, \quad \sigma_{BB} = 0.88 \]

Temperature: \(T_{LJ} = 0.01 \varepsilon/k_B < T_g = 0.435 \varepsilon/k_B \)

LAMMPS: \(N_p = 60000, \quad \text{MD step } \Delta t_{MD} = 0.005 \tau \)

Initial quench rates: \(10^{-2} \varepsilon/k_B \tau \) to \(10^{-5} \varepsilon/k_B \tau \)

Pressure \(P = 0 \) and thermal period \(T = 5000\tau = 10^6 \text{ MD steps} \)
Potential energy per atom during **100 thermal cycles** for different max T_{LJ}

- $T_{LJ} = 0.4 \varepsilon / k_B$
- $T_{LJ} = 0.3 \varepsilon / k_B$
- $T_{LJ} = 0.2 \varepsilon / k_B$
- $T_{LJ} = 0.1 \varepsilon / k_B$

Aging at constant temperature: $T_{LJ} = 0.01 \varepsilon / k_B$

Slow initial annealing rate: $10^{-5} \varepsilon / k_B \tau$

Potential energy U during 1000 thermal cycles for different maximum T_{LJ}

$T_{LJ} = 0.10 \frac{\varepsilon}{k_B}$

Transition to low U states after few 100 thermal cycles

$T_{LJ} = 0.35 \frac{\varepsilon}{k_B}$

Higher max T_{LJ} => lower U_{min}

$T = 5000\tau = 10^6$ MD steps

Red curves = Aging at constant temperature: $T_{LJ} = 0.01 \frac{\varepsilon}{k_B}$

Slow initial annealing rate: $10^{-5} \frac{\varepsilon}{k_B \tau}$

Preprint: cond-mat/1810.10877
Potential energy minima during 1000 thermal cycles for different max T_{LJ}

Data in (a)-(d) for indicated initial cooling rates

Cooling rate: $10^{-3} \varepsilon / k_B \tau$

- Black curves = Aging at constant temperature: $T_{LJ} = 0.01 \varepsilon / k_B$
- Lowest U_{min} at max $T_{LJ} = 0.35 \varepsilon / k_B$

- (a) 10^{-2}
 - $T_{LJ} = 0.4 \varepsilon / k_B$
- (b) 10^{-3}
 - $T_{LJ} = 0.35 \varepsilon / k_B$
- (c) 10^{-4}
 - $T_{LJ} = 0.3 \varepsilon / k_B$
- (d) 10^{-5}
 - $T_{LJ} = 0.25 \varepsilon / k_B$
 - $T_{LJ} = 0.2 \varepsilon / k_B$
 - $T_{LJ} = 0.1 \varepsilon / k_B$
Configurations of atoms with large nonaffine displacements after 1 cycle

\[D^2(t, T) > 0.04 \sigma^2 \]

\[\text{max } T_{LJ} = 0.35 \varepsilon/k_B \]

After 1-st cycle
Large clusters of atoms with large nonaffine displacements

After 100-th cycle
Nearly reversible particle dynamics

After 200-th cycle

After 1000-th cycle

B small atom type

Slow initial quench rate: \(10^{-5} \varepsilon/k_B \tau \)

cond-mat/1810.10877
Tensile stress vs strain after 1000 cycles: effects of quench rate and max T_{LJ}

σ_{xx} (units $\varepsilon \sigma^{-3}$)

Quench rate = 10^{-3}

ε_{xx}

(a) 10^{-2}

(b) 10^{-4}

(c) 10^{-5}

(d)

ε_{xx}

Maximum T_{LJ}

$T_{LJ} = 0.4 \varepsilon/k_B$

$T_{LJ} = 0.35 \varepsilon/k_B$

$T_{LJ} = 0.2 \varepsilon/k_B$

$T_{LJ} = 0.1 \varepsilon/k_B$

$T_{LJ} = 0.01 \varepsilon/k_B$

Aged glasses

Strain rate = 10^{-5} $1/\tau$

Aged glasses (black curves): Higher yield peak at slower quench rates

Highest yield peak (blue curves) at maximum $T_{LJ} = 0.35 \varepsilon/k_B$
The yielding peak σ_Y, the elastic modulus E, and U_{min} versus maximum T_{LJ}

Highest yield peak and elastic modulus after thermal loading with maximum $T_{LJ} = 0.35 \varepsilon/k_B$

A correlation between U_{min} and maximum values of σ_Y and E.

Initial quench rates:

- $10^{-2} \varepsilon/k_B \tau$
- $10^{-3} \varepsilon/k_B \tau$
- $10^{-4} \varepsilon/k_B \tau$
- $10^{-5} \varepsilon/k_B \tau$

Preprint: cond-mat/1810.10877
Conclusions:

• MD simulations of binary 3D Lennard-Jones glasses that are initially prepared with different cooling rates and then subjected to repeated cycles of heating and cooling.

• With increasing cycle number, the potential energy minima saturate to a constant value that depends on the thermal amplitude ($max T_{LJ}$) and the initial cooling rate.

• The elastic modulus and the yielding peak (after the thermal treatment) acquire maximum values at a particular $max T_{LJ}$ which coincides with the minimum of the potential energy.

• In the steady state, the glasses thermally expand and contract but most of the atoms return to their cages after each cycle, similar to limit cycles in periodically driven glasses.

