Dynamical heterogeneity and structural relaxation in periodically deformed polymer glasses

N. V. Priezjev, "Dynamical heterogeneity in periodically deformed polymer glasses", Physical Review E 89, 012601 (2014).
N. V. Priezjev, "Heterogeneous relaxation dynamics in amorphous materials under cyclic loading", Physical Review E 87, 052302 (2013).

Dynamical heterogeneity in quiescent and deformed polymer glasses

Molecular dynamics simulations of a quiescent polymer glass near T_{g}

The most mobile monomers (top 5\%) form transient clusters whose mean size increases upon cooling towards T_{g}

Gebremichael, Schroder, Starr, Glotzer, J. Chem. Phys. 64, 051503 (2001).

Riggleman, Lee, Ediger, and de Pablo,
Soft Matter 6, 287 (2010).

Dynamical heterogeneity in granular media and supercooled liquids

- Cyclic shear experiment on dense 2D granular media

Spatial location of successive clusters of cage jumps
Power-law distribution of clusters sizes
Candelier, Dauchot, and Biroli, PRL 102, 088001 (2009).

- Fluidized bed experiment: Monolayer of bidisperse beads

Present study:

-3D polymer glasses under periodic strain?

- Monomer diffusion depends on the strain amplitude
- Structural relaxation and dynamical heterogeneities
- Particle hopping dynamics clusters of mobile particles
- Dynamical facilitation of mobile monomers

Candelier, Dauchot, and Biroli, EPL 92, 24003 (2010).

- 2D softly repulsing particle molecular dynamics simulation (supercooled liquids at $\gamma=0$)

Candelier, Widmer-Cooper, Kummerfeld, Dauchot, Biroli, Harrowell, Reichman, PRL (2010).

Details of molecular dynamics simulations and parameter values

Lennard-Jones potential:

$$
\mathrm{V}_{\mathrm{LJ}}(\mathrm{r})=4 \varepsilon\left[\left(\frac{\mathrm{r}}{\sigma}\right)^{-12}-\left(\frac{\mathrm{r}}{\sigma}\right)^{-6}\right]
$$

FENE bead- $\quad V_{\text {FENE }}(\mathrm{r})=\frac{1}{2} \mathrm{kr}_{\mathrm{o}}^{2} \ln \left(1-\frac{\mathrm{r}^{2}}{\mathrm{r}_{0}^{2}}\right)$
spring model:

$$
\mathrm{k}=30 \varepsilon \sigma^{-2} \text { and } \mathrm{r}_{\mathrm{o}}=1.5 \sigma
$$

Kremer \& Grest, J. Chem. Phys. 92, 5057 (1990)

Monomer density: $\rho=1.07 \sigma^{-3}, N=3120$
Temperature: $T=0.1 \varepsilon / k_{B}<T_{g} \approx 0.3 \varepsilon / k_{B}$
Cubic box: $14.29 \sigma \times 14.29 \sigma \times 14.29 \sigma$
Lees-Edwards periodic boundary conditions
SLLOD equations of motion: $\Delta t_{M D}=0.005 \tau$

Oscillation period: $T=2 \pi / \omega=125.66 \tau$

Oscillatory shear strain: $\quad \gamma(t)=\gamma_{0} \sin (\omega t)$
Strain amplitude: $\quad \gamma_{0} \leq 0.09, \quad \omega=0.05 \tau^{-1}$

15,000 cycles ($\approx 3.8 \times 10^{8} \mathrm{MD}$ steps)

Mean-square-displacement of monomers for different strain amplitudes γ_{0}

Time autocorrelation function of normal modes vs. strain amplitude γ_{0}

Self-overlap order parameter $Q_{s}(a, t)$ for different strain amplitudes γ_{0}

$$
Q_{s}(a, t)=\frac{1}{N_{m}} \sum_{i=1}^{N_{m}} \exp \left(-\frac{\Delta r_{i}(t)^{2}}{2 a^{2}}\right) \quad \begin{aligned}
& a=0.12 \sigma=\text { probed length scale (about the cage size) } \\
& N_{m}=\text { total number of monomers in the system } \\
& \Delta r_{i}(t)=\text { the monomer displacement vector }
\end{aligned}
$$

$Q_{s}(a, t)$ describes structural relaxation of the material. Measure of the spatial overlap between monomer positions.

Reversible dynamics: $Q_{s}(t) \approx$ constant Diffusive regime: $Q_{s}(t)$ vanishes at large t

Susceptibility

$$
X_{4}(a, t)=?
$$

Contour plots of dynamical susceptibility $X_{4}(a, t)$ and $Q_{s}(a, t)$ for $\gamma_{0}=0.06$

Dynamical susceptibility as a function of time for different strain amplitudes γ_{0}

$$
X_{4}(a, t)=N_{m}\left(\left\langle Q_{s}(a, t)^{2}\right\rangle-\left\langle Q_{s}(a, t)\right\rangle^{2}\right) \quad \begin{aligned}
& \text { probed length scale } a=\max \text { in } X_{4}(a, t) \\
& N_{m}=\text { total number of monomers }
\end{aligned}
$$

$X_{4}(a, t)$ is dynamical susceptibility, which is the variance of Q_{s}.

Maximum $X_{4}(a, t)$ indicates the largest spatial correlation between localized monomers.
Berthier \& Biroli (2011)

Transition at $\gamma_{0}=0.06$ maximum correlation length $\xi_{4}=\left[X_{4}^{\max }(a, t)\right]^{1 / 3}$

$$
\xi_{4}=\left[X_{4}^{\max }(a, t)\right]^{1 / 3}
$$

(in contrast to steadily sheared supercooled liquids and glasses) Mizuno \& Yamamoto, JCP (2012), Tsamados, EPJE (2010)

Number of monomers undergoing cage jumps N_{c} as a function of time t / T

Power spectrum \sim frequency $^{-2}=$ simple Brownian noise

Numerical algorithm for detection of cage jumps:

Candelier, Dauchot, Biroli, PRL (2009).

Periodic deformation $=$ intermittent bursts of large monomer displacements.

Scale-invariant processes or Pink noise $=" 1 / f$ noise"

Typical clusters of mobile monomers for different strain amplitudes γ_{0}

Fraction of dynamically facilitated monomers increases with strain amplitude

$$
\Delta t=\text { time interval when a particles is immobile (inside the cage) } \quad \underline{\text { Strain amplitude: }}
$$

Large surface area $=$
Oscillation period: $T=2 \pi / \omega=125.66 \tau$
high probability to have mobile neighbors.
Vogel and Glotzer, Phys. Rev. Lett. 92, 255901 (2004).

Important conclusions:

- The coarse-grained bead-spring polymer glass at $T=0.1 \varepsilon / k_{B}<T_{g}$ under spatially homogeneous, time-periodic shear strain.
- At small strain amplitudes, the mean square displacement exhibits a broad sub-diffusive plateau and the system undergoes nearly reversible deformation over about 10^{4} cycles.
- At the critical strain amplitude, the transition from slow to fast relaxation dynamics is associated with the largest number of dynamically correlated monomers as indicated by the peak value of the dynamical susceptibility. $\quad \xi_{4}=\left[X_{4}^{\max }(a, t)\right]^{1 / 3}$
- The detailed analysis of monomer hopping dynamics indicates that mobile monomers aggregate into clusters whose sizes increase at larger strain amplitudes. (This is in contrast to steadily sheared supercooled liquids and glasses).
- Fraction of dynamically facilitated mobile monomers increases at larger strain amplitudes.
N. V. Priezjev, "Dynamical heterogeneity in periodically deformed polymer glasses", Physical Review E 89, 012601 (2014).

