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Dynamical Heterogeneities in Granular Media and Supercooled Liquids

Candelier, Dauchot, and Biroli, PRL 102, 088001 (2009).

Spatial location of successive clusters of cage jumps

• Cyclic Shear Experiment on Dense 2D Granular Media

Power-law distribution of clusters sizes

• Fluidized Bed Experiment: Monolayer of Bidisperse Beads

• 2D Softly Repulsing Particle Molecular Dynamics Simulation (Supercooled Liquids at Eqm) 

Candelier, Dauchot, and Biroli, EPL 92, 24003 (2010).

Candelier, Widmer-Cooper, Kummerfeld, Dauchot, Biroli, Harrowell, Reichman, PRL (2010).

• 3D metallic glass 
under periodic strain?

Present study:

• Dynamical facilitation 
of mobile particles 

• Particle diffusion depends
on the strain amplitude

• Structural relaxation and
dynamical heterogeneities 

• Particle hopping dynamics 
clusters of mobile particles
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Details of molecular dynamics simulations and parameter values

Monomer density:  = A + B = 1.20  3

Temperature: T = 0.1  kB  <  Tg = 0.45  kB 

System dimensions: 12.81σ  14.79σ  12.94σ

Lees-Edwards periodic boundary conditions

The SLLOD equations of motion:  tMD= 0.005τ

Binary 3D Lennard-Jones Kob-Andersen mixture:
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W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).

2940 , ,5.0  1.5, ,0.1  pBABBABAA Nmm

,88.0  0.8, ,0.1  BBABAA 

Interaction parameters for   A and B particles:

Oscillatory shear strain: ) cos()( 0 tt   

Strain amplitude:  ,/00  

Oscillation period:  

102.0  

  16.314/2 T

AAAAA m  

12,000 cycles (  7.5× 108 MD steps) 
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Slope = 1.0

ωτ = 0.02

Mean square displacement as a function of time for different strain amplitudes 

Oscillation period:    16.314/2 T

=  number of cycles  
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Reversible dynamics
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Strain amplitude:  

03.00 
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Self-overlap order parameter Qs(a,t) for different strain amplitudes
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=  number of cycles  

= probed length scale ~ max in      
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),(4 taX

),( taQs describes 
structural relaxation
of the material.
Measure of the spatial
overlap between partic-
les positions. 

Strain 
amplitude:  

Reversible dynamics:
Qs(t)  constant

Diffusive regime:
Qs(t) vanishes at large t

?),(4 taX
Susceptibility



is dynamical 
susceptibility, which 
is the variance of Qs.

Dynamical susceptibility as a function of time for different strain amplitudes
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The dynamic correlation 
length increases with in-
creasing strain amplitude
(in contrast to steadily 
sheared supercooled 
liquids and glasses).

02.00 

03.00 

06.00 

Tsamados, EPJE (2010)

Maximum               
indicates the largest 
spatial correlation 
between localized 
particles.

),(4 taX

Berthier & Biroli (2011)

Mizuno & Yamamoto, JCP (2012);
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γ0 = 0.02

γ0 = 0.04

γ0 = 0.06

=  number of cycles  

Power spectrum ~ frequency-2 = simple Brownian noise

Numerical algorithm for 
detection of cage jumps:

Candelier, Dauchot,  
Biroli, PRL (2009).

Strain amplitude:  

Scale-invariant processes
or Pink noise = "1/f noise"

2940pN

Periodic deformation =
intermittent bursts of 
large particle displace-
ments.

Number of particles undergoing cage jumps Nc as a function of time t /T



Typical clusters of mobile particles A (blue circles) and B (red circles)
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Strain amplitude:  

Strain amplitude:  

Single particle
reversible jumps:  

Compact clusters;
Irreversible jumps:  

9.0
04   The system is 

fully relaxed over 
about 104 cycles   

06.00 
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Strain amplitude:  

=  number of cycles  

Oscillation period:    16.314/2 T
Vogel and Glotzer, Phys. Rev. Lett. 92, 255901 (2004).

Cage jumpMobile neighbor

 t =  time interval when a particles is immobile (inside the cage)

Fraction of dynamically facilitated particles increases with strain amplitude

Large surface area =
high probability to 
have mobile neigh-
bors.



Important conclusions:

http://www.egr.msu.edu/~priezjev Michigan State University

• MD simulations of the binary 3D Lennard-Jones Kob-Andersen mixture at T = 0.1  kB

under spatially homogeneous, time-periodic shear strain. 

• At small strain amplitudes, the mean square displacement exhibits a broad sub-diffusive 
plateau and the system undergoes nearly reversible deformation over about 104 cycles.

• At larger strain amplitudes, the transition to the diffusive regime occurs at shorter time 
intervals and the relaxation process involves intermittent bursts of large particle 
displacements.

• The detailed analysis of particle hopping dynamics and the dynamic susceptibility  
indicates that mobile particles aggregate into clusters whose sizes increase at larger 
strain amplitudes.   (In contrast to sheared supercooled liquids and glasses).

• Fraction of dynamically facilitated mobile particles increases at larger strain amplitudes.
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