Effect of Surface Roughness on Shear Rate Dependent Slip Flow of Simple Fluids: A Molecular Dynamics Study

Nikolai V. Priezjev

Department of Mechanical Engineering

Michigan State University

Movies @ http://www.egr.msu.edu/~priezjev

<u>N. V. Priezjev</u>, "Rate-dependent slip boundary conditions for simple fluids", *Physical Review E* **75**, 051605 (2007); "Effect of surface roughness on rate-dependent slip in simple fluids", *Journal of Chemical Physics* **127**, 144708 (2007).

Department of Mechanical Engineering

Motivation for investigation of slip phenomena at liquid/solid interfaces

• What is *THE* boundary condition for liquid on solid flow in the presence of slip?

Still no fundamental understanding of slip or what is proper BC for continuum studies. Issue very important to micro- and nanofluidics.

- Navier slip boundary condition (1827) assumes constant slip length. Is this always true? Does slip length depend on local shear rate?
- Combined effect of surface roughness, wettability and rate-dependency on the slip length L_s
 - 1) thermal surface roughness
 - 2) periodic and random wall corrugations
- Experimental studies indicate huge differences in the slip length. What is the fundamental cause of such variability?

Department of Mechanical Engineering

$$m\ddot{y}_i + m\Gamma\dot{y}_i = -\sum_{i\neq j} \frac{\partial V_{ij}}{\partial y_i} + f_i$$

 $\Gamma = \tau^{-1}$ friction; f_i = random force
Langevin thermostat: $T = 1.1 \epsilon/k_B$
Thompson & Robbins, *PRA* (1990).

Lennard-Jones (LJ) potential:

$$\mathbf{V}_{\rm LJ}(\mathbf{r}) = 4\varepsilon \left[\left(\frac{\mathbf{r}}{\sigma}\right)^{-12} - \left(\frac{\mathbf{r}}{\sigma}\right)^{-6} \right]$$

- $\sigma-\text{molecular length scale}$
- ϵ LJ energy scale
- $\tau = (m\sigma^2/\epsilon)^{1/2} LJ$ time scale

N = $10^3 \sim 10^5$ fluid molecules Fluid density: $\rho = 0.81 \sigma^{-3}$

Weak wall–fluid interactions: 0.3 $\Box \epsilon_{wf} \Box 1.1$

FCC solid walls: $\rho_{\rm w} = 2.73 \ \sigma^{-3}$

Department of Mechanical Engineering

Fluid structure near fcc walls: layering and in-plane order

Higher surface energy ε_{wf} results in:

- more pronounced layering near walls
- larger surface induced fluid ordering

Incommensurate wall-fluid structures

In-plane fluid structure factor: $S(\mathbf{k}) = 1/N_{\ell} \mid \sum_{j} e^{i \, \mathbf{k} \cdot \mathbf{r}_{j}} \mid^{2}$

Department of Mechanical Engineering

Velocity profiles and slip length L_s as a function of the force f_x

 $\dot{\gamma} = \text{local shear rate} = du(z=h)/dz$

Fluid velocity in the channel and near the interfaces increases with the applied force

For all curves: $L_{\text{max}} / L_s^* = 1.63 \pm 0.13$

Gradual transition in $L_s(f_x)$ is observed by varying the strength of the wall-fluid interaction ε_{wf}

Department of Mechanical Engineering

Dependence of slip length L_s on shear rate $\dot{\gamma}$ and surface energy $\varepsilon_{\rm wf}$

Gradual transition in $L_s(\dot{\gamma})$ is observed by varying the strength of the wall-fluid interaction ε_{wf}

For weak surface energy:

 $L_{s}/L_{s}^{*} = (1-\dot{\gamma}/\dot{\gamma}_{c})^{-1/2}$

Fitting parameters:

$$L_s^* = 19.5 \,\sigma$$
 and $\dot{\gamma}_c = 0.093 \,\tau^{-1}$

Thompson & Troian, Nature (1997)

Flow rate Q(L_s) increases due to $L_s(\dot{\gamma})$ Q(L_{max})/Q(L_s^*) = 1.59 ± 0.08 for ε_{wf} = 0.3 Q(L_{max})/Q(L_s^*) = 1.36 ± 0.08 for ε_{wf} = 1.1 For all curves: $L_{\text{max}} / L_s^* = 1.63 \pm 0.13$

Strong wall-fluid interaction potential:

$$L_s = L_s^* + A \dot{\gamma}$$

Choi, Westin & Breuer, Phys. Fluids (2003).

Department of Mechanical Engineering

A correlation between L_s and structure factor $S(G_1)$ in the first fluid layer

 $\rho_{\rm c}$ = contact density of the first fluid layer

Slip length $L_s(\dot{\gamma})$ strongly correlates with the surface induced fluid order $S(G_1)$ in a *rate-dependent* regime. Master curve in a wide range ε_{wf} and $\dot{\gamma}$

$$L_s \sim (T_1/S(\mathbf{G}_1)\,\rho_c)^{\alpha}$$

Department of Mechanical Engineering

Effect of thermal surface roughness on slip length $L_s(\dot{\gamma})$

Department of Mechanical Engineering

Slip length L_s rate dependence on periodic surface roughness ka

Vertical offset of Lennard-Jones atoms of lower and upper walls:

 $\Delta z(x) = \frac{a}{\sin(2\pi x/\lambda)}$

Wavenumber: $k = 2\pi / \lambda$

Molecular dynamics and continuum analysis at low shear rates:

N.V. Priezjev and S.M. Troian, *J. Fluid Mech.*, **554**, 25 (2006).

Surface roughness ka reduces slip length L_s and its rate-dependence

Conclusions

• Molecular dynamics simulations predict a gradual transition in the functional dependence of the slip length on shear rate for simple fluids by varying surface energy.

- A strong correlation between the slip length L_s and structure factor $S(G_1)$ in the first fluid layer in a *rate-dependent* regime.
- Master curve in a wide range $\varepsilon_{\rm wf}$ and $\dot{\gamma}$: L_s

$$L_s \sim (T_1/S(\mathbf{G}_1)\,\rho_c)^{\alpha}$$

<u>N. V. Priezjev</u>, "Rate-dependent slip boundary conditions for simple fluids", *Physical Review E* **75**, 051605 (2007); "Effect of surface roughness on rate-dependent slip in simple fluids", *Journal of Chemical Physics* **127**, 144708 (2007).

Department of Mechanical Engineering

Experimental measurements of slip length

Reference	Slip length	Method	Liquid	Surface	Size	Shear rate	Roughness
Schnell (1956)	1 – 10 µm	Flow rate	Water	Glass + DDS	<800µm	$10^{2\sim3} \text{ sec}^{-1}$	
Churaev,Sobolev Somov (1984)	30 –70 nm	Flow rate- press. drop	Water and mercury	Quartz	< 7.2µm	10 ^{1~4} sec ⁻¹	
Watanabe,Uda- gawa (1999)	~ 100 µm	Flow rate– press. drop	Water, Glycerin	Acrylic resin, hydrophobic	6-12mm		
Migler, Hervet & Leger (1993)	0.1–300µm	EWIF	PDMS	Quartz + OTS		0.1 –1 sec ⁻¹	2-3 Å
Horn, Vinograd ova <i>et al</i> . (00)	30 – 50 nm	SFA + drainage	Boger fluid	Mica	50-900nm		
Zhu & Granick PRL (2001)	$0-2 \ \mu m$	SFA + drainage	Tetradecane and water	Mica + OTE	~100 nm	10 ^{1~5} sec ⁻¹	~ 1 Å
Zhu & Granick PRL (2002)	0 – 40 nm	SFA + drainage	Tetradecane and water	Mica + OTE	~100 nm	$10^{1\sim5} \text{ sec}^{-1}$	0.2 – 6 nm
Tretheway and Meinhart (2002)	~ 1 µm	µ–PIV	Water	Glass + OTS hydrophobic	30µm	10^{2} sec^{-1}	2 – 3 Å
Choi, Westen & Breuer (2003)	~ 30 nm	Flow rate- press. drop	Water	Glass + OTS hydrophobic	21µm	10 ⁵ sec ⁻¹	2 – 3 Å
Charlaix group PRL (2005)	~ 20 nm	SFA + drainage	Dodecane and water	Glass + OTS hydrophobic	<200 nm	$<_{1}^{5} \cdot 10^{-3} \text{ sec}^{-1}$	~ 1 nm

Department of Mechanical Engineering