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Abstract 
 
The critical field of the Freedericksz transition and optical 
hysteresis is investigated for Polymer Stabilized Nematic Liquid 
Crystals as a function of polymer concentration. The results are 
described by a simple phenomenological model, which accounts 
for the change in polymer network morphology as the 
concentration of polymer is increased. 

 

1. Introduction 
 
Polymer Stabilized Liquid Crystals (PSLC) are composed of a 
polymer network dispersed in a nematic liquid crystal. They are 
promising materials for many display configurations. Small 
amounts of reactive monomer polymerized in a nematic liquid 
crystal create an aligned polymer network that under some 
circumstances can provide a memory effect [1]. The polymer 
network structure captures the details of the nematic director 
prior to photo-polymerization. In this paper we present our 
results on the influence of the polymer network on the switching 
behavior of a homogeneously aligned nematic liquid crystal. We 
show that the critical field of the Freedericksz transition, as well 
as the width of optical hysteresis, increases with the polymer 
network concentration, and that this dependence on polymer 
concentration can be described by a phenomenological model.  
 
Previous models described the critical field of the Freedericksz 
transition in PSLC systems, which to some extent took into 
account the polymer morphology as collection of planes [2] or 
bundles [3] parallel to the substrates, or collectively as an 
effective field [4]. These models nicely describe the behavior of 
the critical field in the low concentration limit. The model of the 
polymer matrix as a series of planes perpendicular to the x-, y-, 
and z-axes of the Cartesian coordinate system was introduced in 
[5]. Current models do not explain the dependence of the critical 
field on the polymer concentration especially in the high 
concentration limit. We explain the behavior of the critical field 
of the Freedericksz transition in liquid crystal-polymer systems 
by introducing a phenomenological model, which takes into 
account the morphology of the polymer network. Also we 
explain the optical hysteresis effect and its dependence on 
concentration in such systems. 
 
2. Result 
 
Consider a planar cell of PSLC sandwiched between two 
transparent indium tin oxide (ITO) coated glass plates with a 
5µm cell gap thickness. The glass substrates are coated with 
rubbed polyimide such that the nematic directors on both 
surfaces are anchored parallel to the plates. Two types of PSLC 

were prepared from low molecular weight nematic liquid crystal 
BL038 (EM Industries), diacrylate monomers LC242 (BASF) 
for the first type and RM257 (EM Industries) for the second 
type, and a low percentage of photo-initiator Darocur1173 
(Ciba) was used so that polymerization can be carried out in the 
UV. When a diacrylate monomer is polymerized in a liquid 
crystal solvent, the orientation and order of the resultant network 
depends on the orientation and order of the liquid crystal. So we 
assume that the polymer network has planar alignment, which is 
identical to the alignment of liquid crystal. In our studies we 
investigated the concentration range where the monomer is 
totally dissolved in liquid crystal at room temperatures (<6% of 
monomer by weight). We also make sure that the polymerization 
is complete by UV curing the samples for sufficiently long time. 
 

 
 
Figure 1 The experimental set up for measuring the 
transmission properties of a PSLC cell. The cell is situated 
between the cross polarizers oriented at 450 with respect to 
the nematic director inside the cell.  
 
A schematic illustration of the experimental set up for 
measuring the transmission properties of a PSLC cell is 
presented in Figure 1. We consider the arrangement of a cell 
between a pair of parallel polarizers. The nematic director in the 
cell is oriented at 45o relative to the transmission axes of the 
polarizers. ITO glass plates serve as the electrodes to apply 
1kHz square ac-voltage V. In the field-off state, the cell exhibits 
a phase retardation Γ(=2π/λ(ne-no)d=4π), where ne(=1.799), 
no(=1.527) are the extra-ordinary and ordinary refractive indices 
of the BL038 respectively, d(=5µm) is the cell gap thickness, 
and λ(=633nm) is the wavelength of the incident laser light. Due 
to the uniform alignment of the liquid crystal and the polymer 
network, the transmission light intensity of the cell 
I(=1/2cos2(Γ/2)) is maximum in the field-off state with such 
arrangement of polarizers. 
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Figure 2 Scans of transmittance versus applied voltage V. 
The arrows point in the direction of increasing or decreasing 
field. Vc is the critical voltage, V* is the maximum applied 
voltage for optical hysteresis experiment, which corresponds 
to the first minimum in the transmission intensity, and ∆∆∆∆V is 
the width of optical hysteresis measured at the median value 
of the transmittance. 
 
A transparent cell can be switched to an opaque state when an 
electric field is applied. This is due to the creation of the 
domains of the nematic director in the cell [6]. By application of 
the field only a part of the molecules become reoriented. Those, 
which are in the close vicinity to the polymer network, remain 
less influenced due to anchoring. In this way domains with 
different orientations of the nematic director can be created. The 
phase retardation of the reoriented molecules becomes 

( )2 ( )e on n dxπ λ θΓ = −∫ , where the integral is over the 

domain size and ne(θ) is given by: 
 

2 2 2
1 sin cos
( )e o en n n

θ θ
θ

     
= +     

     
   (1) 

 
The angle θ=θ(x,y) is the tilt angle of the director with respect to 
the z-axis, which depends on the position x, y of the molecule in 
the domain and the field strength. The transmittance T(= 
I(V)/I(V=0)) of the cell in the field-on state is affected by two 
factors, which are the scattering by the nematic director domains 
and the change in the phase retardation. The change in the phase 
retardation gives rise to oscillations in the transmittance, which 
we employ in the optical hysteresis experiment. For this purpose 
we continue the light transmission intensity versus voltage scans 

until the maximum voltage V*, where the light transmission 
intensity reaches its minimum for the fist time (Figure 2(a)), to 
insure that for each concentrations of the polymer in PSLC cells 
the phase retardation is the same at the maximum applied 
voltage. For each concentration voltage was increased and 
decreased at the same rate. By monitoring the transmittance of 
the cells as a function of the applied voltage we determine the 
critical voltage Vc of the Freedericksz transition, and hence the 
critical field Ec=Ec(c) for each concentration c of the polymer. 
Secondly, for each concentration we measure the width of the 
optical hysteresis loop, which we define as the difference in 
voltage ∆V(=Vup-Vdown) between Vup, when the voltage is 
increased, and Vdown, when the voltage is decreased, at the 
median value of the transmittance (Figure 2(b)).  
 
The results of the critical field of the Freedericksz transition for 
both PSLC are shown in Figure 3, where we normalized our data 
to the critical field E0(= ( )0ad Kπ ε ε =0.24V/µm) for BL038 
in planar geometry without the polymer network (c=0), where 
εa(=ε||-ε⊥=16.4) is the dielectric anisotropy of the BL038, ε0 is 
the permitivity of the free space, and K=20.7pN is the elastic 
constant for BL038 in one constant approximation.  

 
Figure 3 Critical fields versus concentration for two PSLC 
prepared using BL038 and diacrylate monomers LC242 
(BASF), and RM257 (EM Industries). Ec is the critical field 
normalized to the critical field E0 in the planar cell filled 
with pure BL038. Solid curve represents the fitting based on 
the model. 
 
To explain the critical field behavior for arbitrary concentration, 
we assume that the polymer network is composed of polymer 
fibrils oriented parallel to the nematic director of the field-off 
state, which depending on the concentration may or may not be 
cross-linked. At low concentration the fibrils are not cross-
linked (Figure 4(a)), although at higher concentration, the fibril 
assembly can be thought of as a formation similar to 
interpenetrated polymer planes [5], due to cross-linking. These 
polymer planes resemble cylinders with their axes parallel to the 
director of the nematic liquid crystal in the field-off state (Figure 
4(b)). A Scanning Electron Microscope (SEM) study of the 
polymer networks [3,7] shows excellent agreement with this 
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concept of polymer morphology. We approximate the polymer 
network at any polymer concentration as forming tubes of 
rectangular cross-section and long axes parallel to the nematic 
director in the field-off state (Figure 4). In the field-on state the 
size of the rectangles equals to the size of the domains of the 
nematic director. We discuss the Freedericksz transition in the 
PSLC cell with the cell gap thickness d in context of the 
transition in the rectangle with sides of length a and b. 
 

 
Figure 4 At low concentration the polymer network is shown 
as a collection of fibrils parallel to the nematic director n in 
the field-off state (z-axis). At high concentration the cross-
linked polymer form hollow tubes. The electric field E was 
applied along the x-axis perpendicular to the glass 
substrates. We approximate the cross-section of the 
cylinders by rectangles as shown. 
 
Based on elastic continuum theory, the total free energy of the 
nematic liquid crystal can be written as: 
 

22
2 2

0( sin )
2 a
LF K K E dxdy

x y
θ θ ε ε θ

 ∂ ∂ = + −  ∂ ∂   
∫  (2) 

 

where θ(x,y) is the distortion angle with respect to the z-axis, 
and L is the lateral size of the cell. By minimizing the total free 
energy (2), we obtain the differential equation for the distortion 
angle:  
 

2 2 2
0

2 2 sin cos 0a E
x y K
θ θ ε ε θ θ∂ ∂+ + =

∂ ∂
   (3) 

 
The critical field of Freedericksz transition in a rectangle of 
sides a and b in the x and y directions respectively is obtained by 
solving (3) with the strong anchoring boundary conditions: θ=0 
at x=0, a and y=0, b. We find: 
 

2 22

0

1 1
c

a

KE
a b

π
ε ε

    = +         
    (4) 

 
This result can be understand by balancing the torque of the 
external electric field and the torques induced by distortions in 
both x and y direction. We assume that the lengths a and b 
diminish with increasing concentration as: 1/a=1/d+1/ξ and 
1/b=1/ξ., where the characteristic length ξ is determined by the 
polymer network and it depends on the concentration c as 
ξ=dA/c. The parameter A is a material property, related to the 
number of polymer fibrils per unit volume. With finite surface 
anchoring, we also need to include the surface anchoring energy. 
We assume that the surface anchoring energy per unit area takes 
the Rapini-Papoular form 21 2 sinsf W θ=  [8], where W is the 
surface anchoring strength. The modified boundary conditions at 
finite anchoring are [8,9]: 
 

sin cos 0,

sin cos 0

S

S

d W
dx K

d W
dy K

θ θ θ

θ θ θ

  ± =  
 

± = 
 

    (5) 

 
where the derivatives are taken on the surfaces of the polymer. 
Hence the critical field with finite anchoring can be written 
approximately as:  
 

2 22

0

1 1 1
2 / 2 /c

a

KE
d K W K W

π
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 = + +   + +     

 (6) 

 
This expression is valid when K/W<10a and K/W<10b [10]. The 
surface anchoring strength W is also a function of the polymer 
concentration c. We assume that it depends on the concentration 
as: W=Kc2/(dB) since the surface density of polymer fibrils 
scales as c2. The parameter B is also a material parameter, which 
characterizes the polymer-liquid crystal interface. Finally the 
critical field as a function of the polymer concentration takes the 
form: 
 

2 22 2

0

1
2 2c
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K c cE
d Ac B Ac B
π

ε ε

    
 = + +   + +     

  (7) 

 
At low concentrations (c→0), the critical field in equation (7) 
gives the original Freedericksz critical field 

( )0 0c aE E d Kπ ε ε= = . By fitting the experimental data to 
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the critical field of expression (7) we obtain A=0.2 and B=2.4. 
The fit is shown in Figure 3 by the solid line. The value of the 
parameter A shows that even at concentrations c~1%, the 
relative polymer spacing is much smaller than the cell gap d, 
which is in the agreement with the SEM pictures of the PSLC 
[3,7]. 
 
The dependence of the optical hysteresis width on polymer 
concentration is shown in Figure 5. We believe that the presence 
of optical hysteresis is due to the extremely high relaxation time 
of the polymer network, which is due in turn to the elastic strain 
induced on the polymer network by the electric field. Clear 
dependence of the optical hysteresis on concentration indicates 
the dependence of the morphology of the polymer network on 
concentration. We are currently working on a model to describe 
this phenomenon. 
 

 
Figure 5 Dependence of the optical hysteresis width on 
concentration. ∆∆∆∆VLC242=0.25c and ∆∆∆∆VRM257=0.16c for PSLC 
prepared using LC242 and RM257 respectively. 
 
 

3. Summary 
 
This contribution represents a comprehensive approach to 
Polymer Stabilized Liquid Crystals, and underlines the details 
behind their critical field of switching and hysteresis effect. 
Polymer networks are being investigated for a number display 
related reasons such as to make Liquid Crystal Display materials 
more robust for flexible display applications, to create a bistable 
memory effect, and increase the response time in in-plane 
switching displays. Our basic model and results are very 
relevant in all of these current display related orientations. 
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