Effect of surface roughness on slip flows in nanoscale polymer films
Molecular dynamics simulations versus continuum predictions
Anoosheh Niavarani and Nikolai V. Priezjev

Motivation to investigate the slip phenomena at interfaces

- What is the boundary condition for liquid on solid flow in the presence of slip?
- Still no fundamental understanding of slip at or proper BC for continuum studies.
- Navier slip boundary condition (1827) assumes constant slip length. Is it always true?
- How does surface roughness affect slip flow and conformation of a polymer chain?
- How does molecular dynamics simulations compare with continuum results?

Rheology of a polymer melt near rough surfaces

- Fluid density profiles
- For a fixed wavelength, slip velocity γ is reduced at larger amplitudes. R_{s0} increases with shear rate.
- For a fixed amplitude, more slip at larger wavelength and smaller shear rate.
- The contact density inside the valley is larger than its value above the peak.

Rheology of a polymer melt near rough surfaces

- Fluid velocity profiles
- $\dot{\gamma}$ = 1.4 σ
- Continuum modeling of slip flow past a curved boundary
- Method of solution
- Finite element penalty function with bilinear rectangular grid
- 2D Stokes flow without body force
- $\mu \partial U / \partial y + \nabla p = 0$ $\nabla U = 0$

Boundary conditions
- Couette flow with constant slip length at the top wall.
- Either slip boundary conditions:
- $\dot{\gamma} = L_0 \dot{\gamma} = \frac{dU}{dz} = \frac{\partial U}{\partial y}$
- σ normal vector to the surface

Velocity vanishes in valleys with increasing slip length

Pressure increases

Conclusions

- At small wavelengths $\lambda < R_{s0}$ polymer chain tend to stretch in the direction of the shear flow in the regions above peaks of sinusoidal corrugation and elongate inside valleys along the y direction.
- Molecular dynamics results recover the continuum solutions in the Stokes regime in the limit of small surface roughness R_{s0} and $\lambda < 66.6 \sigma$.
- Effective slip length is reduced at small wavelengths λ and for large amplitude a of the corrugated surface.

References