Effect of surface roughness on slip flows in nanoscale polymer films
Molecular dynamics simulations versus continuum predictions

Anoosheh Niavarani and Nikolai V. Priezjev

Motivation to investigate the slip phenomena at interfaces
- What is the boundary condition for liquid on solid flow in the presence of slip?
- Is the slip always true?
- How does surface roughness affect slip flow and conformation of a polymer chain?
- How do molecular dynamics simulations compare with continuum results?

Details of molecular dynamics (MD) simulations
- Equations of motion:
 \[\frac{d^2\mathbf{r}_i}{dt^2} = \mathbf{F}_i \]
- Lennard-Jones potential:
 \[V(r) = 4\epsilon \left(\frac{\sigma}{r} \right)^{12} - \frac{2\epsilon}{r} \] Nonlinear elastic spring
 \[V_{es}(r) = -k_2(r - r_0)^2 \]
- Long-time scale:
 \(\lambda = 7.5 a \)
- Time scale:
 \(\lambda = 0.9 \) to \(\lambda = 1.4 a \)

Conformation of polymer chains near corrugated wall
- To study the conformation of polymer chains, the radius of gyration is calculated:
 \[R_g^2 = \frac{1}{M} \sum_i \left(\mathbf{r}_i - \mathbf{r}_c \right)^2 \]
 \(R_c = 0.05 a \) for MD and continuum
 \(R_g = 0.05 a \) for MD

Rheology of a polymer melt near rough surfaces
- Fluid velocity profiles
- Fluid density profiles
- Continuum modeling of slip flow past a curved boundary
- Method of solution
- Finite element penalty function with bilinear rectangular grid
- 2D Stokes flow without body force
- \(\mu \mathbf{v} \nabla \mathbf{v} = -\nabla p \)
- Attraction
- \(p = \nabla \cdot \nabla \mathbf{U} = -\phi \mathbf{U} \)
- \(\phi = 10^{-7} \)

Slip length: comparison between MD and continuum
- Continuum results
 - Continuum resolution
 - Effective slip length \(L_{sl} \) decreases with increasing surface roughness parameter \(k_a \)

Conclusions
- At small wavelengths \(\lambda \sim R_s \), polymer chains tend to stretch in the direction of the shear flow in the regions above peaks of sinuous corrugation and elongate inside valleys along the y direction.
- Molecular dynamics results recover the continuum solutions in the Stokes regime in the limit of small surface roughness \(k_a \) and \(\lambda = 66.6 a \).
- Effective slip length is reduced at small wavelengths \(\lambda \) and/or large amplitude \(a \) of the corrugated surface.

References