The effective slip length and vortex formation in laminar flow over a rough surface

Anoosheh Niavarani and Nikolai V. Priezjev Department of Mechanical Engineering Michigan State University

Movies and preprints @ http://www.egr.msu.edu/~niavaran

A. Niavarani and N.V. Priezjev, "The effective slip length and vortex formation in laminar flow over a rough surface," *Phys. Fluids* **21**, 052105 (2009).

A. Niavarani and N.V. Priezjev, "Rheological study of polymer flow past rough surfaces with slip boundary conditions," *J. Chem. Phys.* **127**, 144902 (2008).

Acknowledgement: ACS Petroleum Research Fund

Introduction

 The validity of the no-slip boundary condition is well accepted in macroflows, however, in micro and nanoflows molecular dynamics (MD) simulation and experimental studies report the existence of a boundary slip.

- The boundary condition and surface topology are major factors affecting the flow pattern near the solid surface and the formation of recirculation zones.
- In microfluidic channels the flow separation can modify wall shear stress distribution, <u>enhance mixing efficiency</u> and <u>promote convective heat transfer</u>.
- In this study the effects of surface corrugation, local slip boundary conditions, and the *Re* number on flow pattern and effective slip length are studied.

Department of Mechanical Engineering

Details of continuum simulations (Finite Element Method)

Equations of motion (penalty formulation):

$$\begin{split} \nabla \cdot \mathbf{u} &= -\frac{p}{\Lambda} \\ \rho \left(\mathbf{u} \cdot \nabla u \right) &= \Lambda \nabla (\nabla \cdot \mathbf{u}) + \mu \nabla^2 u \\ \rho \left(\mathbf{u} \cdot \nabla v \right) &= \Lambda \nabla (\nabla \cdot \mathbf{u}) + \mu \nabla^2 v \end{split}$$

Boundary condition:

$$u_t = L_0[(\vec{n} \cdot \nabla)u_t + u_t/R(x)]$$

R(x): local radius of curvature (+) \checkmark concave, (-) \checkmark convex L_0 : intrinsic slip length

Bilinear quadrilateral elements 2 (-1,1) 1(1,1)3 4(1,-1) 3 (-1,-1) Z x Transformation shape function $N_i = \frac{(1+\xi_i\xi)(1+\eta_i\eta)}{\Lambda}$

Galerkin formulation:

$$\begin{split} \left[\int_{\Omega} \rho N_i \Big(\bar{u}_i v_j \frac{\partial N_j}{\partial x} + \bar{v}_i v_j \frac{\partial N_j}{\partial z} \Big) \right] + \left[\int_{\Omega} \Lambda \frac{\partial N_i}{\partial z} \Big(\frac{\partial N_j}{\partial x} u_j + \frac{\partial N_j}{\partial z} v_j \Big) d\Omega \right] + \\ \left[\int_{\Omega} \mu \Big(\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \frac{\partial N_i}{\partial z} \frac{\partial N_j}{\partial z} \Big) v_j d\Omega \right] = RHS_z \end{split}$$

Department of Mechanical Engineering

Effective slip length as a function of wavenumber ka with no-slip boundary condition

Stokes solution, $L_0 = 0$

- Effective slip length decays as a function of *ka*
- Velocity profiles are linear in the bulk region
- A flow circulation appears at ka = 0.79

Pressure and shear stress profiles from Stokes solution for $L_0 = 0$ as a function of ka

Pressure profiles along the curved surface

Wall shear stress profiles

- Adverse pressure gradient increases at larger wave amplitudes *a*
- The adverse pressure gradient combined with the wall shear stress slows down the flow after the peak, which leads to flow separation at large amplitudes

- The wall shear stress τ_w becomes zero in the valley at the separation and attachment points
- The wall shear stress at the peak of corrugation increases at larger *a*

$$\tau_{w} = \mu \left(\frac{\partial u_{t}}{\partial n} + \frac{u_{t}}{R(x)} \right)_{v}$$

Department of Mechanical Engineering

Pressure contours and streamlines with the local slip boundary condition

$$ka = \frac{2\pi a}{\lambda} = 1.12$$

With increasing the slip length L_0 , the vortex gradually vanishes

As the vortex becomes smaller the flow streamlines penetrate deeper into the valley and the effective slip length increases

Department of Mechanical Engineering

Effective slip length from Stokes solution as a function of ka and local slip length L_0

Effective slip length as a function of L_0

Onset of vortex formation as a function of ka

 L_0/h 0.060.03 0.00 -0.07 $h/f_{eff}/h$ -0.08 -0.090.80.9 1.01.2 1.3 1.1 ka

- At large amplitude the analytical results overestimate our numerical results
- The effective slip length saturates to constant value as L_0 increases
- While effective slip length L_{eff} increases, the the recirculation zone becomes smaller
- As corrugation amplitude increases, the amount of local slip required to remove the vortex from the valley increases
- If the flow circulation is present in the valley, L_{eff} is negative

Department of Mechanical Engineering

- Due to the inertial term in the Navier-Stokes equation, the vortex in the bottom of the valley becomes asymmetric
- In the presence of local slip condition the vortex size decreases and streamlines are deformed to follow the boundary curvature (similar to the Stokes flow case).

Department of Mechanical Engineering

Effective slip length as a function of local slip length and Reynolds number

Pressure and wall shear stress profiles

- With increasing *Re* the streamlines move away from the lower boundary and the no-slip plane is shifted into the bulk region and the effective slip length becomes smaller
- Below the blue dashed line, the circulation is always present in the valley and recirculation zone grows as *Re* increases
- The adverse pressure gradient and the wall shear stress on the right side of the peak increase as the *Re* number becomes larger and a vortex appears in the valley when *Re*>85

Department of Mechanical Engineering

Important conclusions

- In the case of Stokes flow with the local no-slip boundary condition the effective slip length decreases with increasing corrugation amplitude and a vortex is formed in the valley for *ka* ≥ 0.79.
- In the presence of the local slip boundary condition along the wavy wall, the effective slip length increases and the size of recirculation zone is reduced.
- The vortex vanishes at sufficiently large values of the intrinsic slip length L_0 .
- Inertial effects promote vortex formation in the valley and reduce effective slip length.
- The growth or decay of the vortex as a function of either Reynolds number or intrinsic slip length is accompanied by the decrease or increase of the effective slip length [a control mechanism for vortex formation in microfluidic channels].

A. Niavarani and N.V. Priezjev, "The effective slip length and vortex formation in laminar flow over a rough surface," *Phys. Fluids* **21**, 052105 (2009).

Department of Mechanical Engineering

