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Distributions of pore sizes and atomic densities in binary 
LJ glasses revealed by molecular dynamics simulations



Outline

We report on the results of a molecular dynamics simulation study of
binodal glassy systems formed in the process of isochoric rapid quenching
from a high-temperature fluid phase. The transition to vitreous state occurs
due to concurrent spinodal decomposition and solidification of the matter.
The study is focused on topographies of the porous solid structures and
their dependence on temperature and average density. To quantify the pore-
size distributions, we put forth a scaling relation that provides a robust data
collapse in systems with high porosity. We also find that the local density of
glassy phases is broadly distributed, and, with increasing average glass
density, a distinct peak in the local density distribution is displaced toward
higher values.



Porous glasses: Structure and length-scales

Structure of different open-cell polymeric foams (1a, 2a) and the respective porous 
glass replicates after calcination (1b,2b).

A. C. Mitropoulos, K. L. Stefanopoulos, E. P. Favvas, E. Vansant, and N. P. Hankins, Sci. 
Rep. 5, 10943 (2015).



Porous glasses. Aspects of Structure & Topography

Sodium borosilicate glass – Experiment 

Three-dimensional reconstruction of a sodium borosilicate glass monolith 

B. Reinhardt, J. Herwig, S. Rannabauer, M. Scheffler and D. Enke, J. Eur. Ceram. Soc. 34, 1465 (2014). 

Borosilicate glass is a type of glass with silica
and boron trioxide as the main glass-forming
constituents.



Theoretical Model

Kob-Andersen Model
Metallic glass (homologous to the Ni80P20 metal alloy)

composed of 80% large particles (A) and 20% smaller particles (B)
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W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).



Theoretical Model: Lennard-Jones Systems

(T, r) projection of the spinodal (CD) and the 

line of liquid-crystal equilibrium (AB, A’B’).

Systems of Lennard-Jones particles is used to determine the spinodal of a
stretched liquid and crystal and the lines of their phase equilibrium at
negative pressures.

The boundary of the thermodynamic stability of a 
homogeneous phase (spinodal) is determined by the condition:
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V. G. Baidakov and S. P. Protsenko, Phys. Rev. Lett. 95, 015701 (2005).



Theoretical Model: Surface Energy

V. G. Baidakov, G. G. Chernykh, and S. P. Protsenko, Chem. Phys. Lett. 321, 315 (2000).
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Density variation at the interface: 

Correction to the surface energy:

Surface Energy:



Theoretical Model: Modus Operandi
Kob-Andersen Model of glass

W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994).

Tg = 0.435 e/kB

Equilibration: 3𝗑104 t

Cooling to T = 0.02-0.2 e/kB

Relaxation at constant T (3𝗑104 t)

High-temperature fluid
o Kinetics of phase separation is complex
o Strong dependence on both: T and r
o Possible logarithmic corrections

I. M. Lifshitz and V. V. Slezov, Sov. Phys. JETP 35(8), 331-339 (1959).

Phase Separation



Phase Separation: Dynamics. I

Dynamical evolution of the binary system with r = 0.3. Illustrates the void-space nucleation and evolution.



Phase Separation: Dynamics. II

Dynamical evolution of the binary system with r = 0.4. Illustrates the void-space nucleation and evolution.



On the driving force of phase separation
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Pressure dependence on temperature (reduced units), 
measured in systems with different  rs3.

𝑃

𝑇
~𝜌5/2

Pressure versus temperature dependence at different 
densities obeys the following scaling relation:

o The phase separation takes place under negative 
pressure, which relaxes depending on T

o The effective confinement introduced barriers
o The evolution occurs such that derivative of pressure 

with respect to local density is negative
o Density suppresses diffusivity and prolongs relaxation



Pore-size distribution functions
Pore-size (diameter) distribution functions are plotted at
three characteristic densities, rs3 : 0.2; 0.5, 0.7, 0.9.

Φ 𝑑𝑝 ~ 𝑑𝑝/ 𝑑
𝛾
f 𝑑𝑝/ 𝑑

In the range of small and intermediate values of dp, 
the PSDs obey the following scaling relation: 

o Scaling holds for systems with rs3 smaller than the 
bulk density

o In the limit of large dp values, a peak is observed
o The peak magnitude is an increasing function 

temperature
o The behavior is somewhat similar to the PSD measured 

in experimental studies
o The experimental peaks are close in magnitude to the 

peak in the region of small dp



Pore-size distribution functions: Bulk limit
o Scaling break down at densities close to the bulk value
o Pore-size distribution shows a Gaussian shape
o Pore-size distributions are narrow 
o Voids dimensions are close to atomic scales

Not an artifact

o Free volume hole radius density distribution f(rf) in glassy 
polycarbonate (PC) and polystyrene (PS).

o The solid curves in the figure shows two Gaussians fitted 
to the experimental data.

G. Dlubek, A. P. Clarke, H. M. Fretwell, S. B. Dugdale, and M. A. Alam, 
phys. stat. sol. (a) 157, 351 (1996).



Temperature dependence
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o Maximum pore size is sensitive to temperature
o Different regimes in temperature dependence
o Strong dependence on density

o Shape is largely preserved
o Peak at large pore sizes is sensitive to T
o Piecewise dependence on average density
o Three distinct regimes in density
o The shapes of curves possess similar 

features
o Increments are of the same order



Local density: Theory
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Average local density

o Average local density can be can be regarded as a measure of deviation of the local density 
from the average density of homogeneous dense system.

o Average local density of a homogeneous sample is constant for R0 above its threshold value



Local density of solid domains
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rs3: a) 0.2; b) 0.3; c) 0.4; d) 0.5; e) 0.6; f) 0.7; g) 0.8; h) 0.9; i) 1.0

o Solid domain correspond to density at 
around 1.2

o The maximum local density is larger for 
small values of rs3

o Thin solid domains can be more dense 
than the bulk material with low porosity.

o Implications for mechanics 



Local density and porosity

o Local density increases with porosity
o Local density can be higher then average 

density of bulk glasses
o Implications for mechanical response
o Possibility to maximize the density of solid 

domains by tuning procedure

𝑝 = 𝑝𝑐𝜎
3 − 𝑝𝜎3

𝛾

Porosity versus average density:

pcs
3 - the critical density below which LJ systems develop voids: 1.24

M. A. Makeev and N. V. Priezjev, Phys. Rev. E 97, 023002 (2018).



Mechanics of porous systems

o Wide range of porosity variation
o Pore response to mechanical loadings:
o Shear loadings
o Compression
o Tension

Young modulus of the EPS concrete versus porosity, p.



Mechanics of porous systems: Theories. I

Models of elastic response of 
materials with porosity (p)

o The dilute or Eshelby method
o the mean-field homogenization method
o the Mori-Tanaka model 
o the generalized self-consistent model
o he differential method 
o Modifications/extensions of the above 
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Mechanics of porous systems: Theories. II 

o Theories does not work over the whole range of p
o Differential method: small and intermediate p
o Large p: percolation theory-based method 

𝐺~ 𝑝𝑐 − 𝑝 𝛼

Large porosity limit:

𝛼 = 2.1 𝑎𝑛𝑑 𝑝𝑐=0.87

N. V. Priezjev and M. A. Makeev, Phys. Rev. E. 96, 053004 (2017).



Shearing of porous systems: Illustration 

N. V. Priezjev and M. A. Makeev, Phys. Rev. E. 96, 053004 (2017).
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Pore geometry evolution under shear. I

Initial stages of shear loading



Pore geometry evolution under shear. II

0.0 10.0 20.0

d
p
/s

0

50

100

150

P
o
r
e 

S
iz

e 
d

is
tr

ib
u

ti
o
n

, 
F

(d
p
) rs

3
 = 0.8, t = t

0

rs
3
 = 0.8, t = t

18

0.0 5.0 10.0 15.0 20.0 25.0 30.0

d
p
/s

0

50

100

150

P
o
re

 S
iz

e 
d

is
tr

ib
u

ti
o
n

, 
F

(d
p
) rs

3
 = 0.8, t = t

0

rs
3
 = 0.8, t = t

19

Final stages of shear loading



Pore geometry evolution under shear: PSDs
Pore size distributions, measured at rs3 = 0.3 (a), 0.5 (b), and 0.8 (c)  are shown at different shear strains.

o Small shear causes pore dilations, while largely preserving the shape of the PSDs curves
o At larger strains, peaks corresponding to large pore diameters start to develop
o The number of peaks depends on the average density of the system under consideration
o Small and intermediate pores coalesce into a larger voids
o The scaling is largely preserved in the limit of small and some intermediate pore diameters (narrowing!) 



Pore geometry evolution under shear: Density
Pore size distributions, measured at rs3 = 0.3 (a), 0.5 (b), and 0.8 (c)  are shown at different shear strains.

o Materials rearrangement takes place under shear (trivial)
o There are growing pores and regions where voids closure occurs
o The weak spots are defined by the extent of lower density regions
o In a) note: the localized lowest density regions is not a weak spot
o Extent of lower (then the average) density region is the defining factor  

b)a) c)



Summary and Outlook

o A model of porous materials with varying porosity was studied
o Porosity is varied in a wide range
o Pore size distributions were quantified
o A scaling relation for pore size distributions was deduced
o Effects of the average density and temperature on porosity were 

investigated
o Density of solid domains was studied as a function of average density
o A scaling relation for porosity variation with average density was derived
o Porous systems responses to mechanical loadings were investigated 

o The model systems developed can be used for studies of adsorption in 
porous materials

o Mechanical effects due to adsorption can readily be investigated using a 
combination of standard MD and MC methods


