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Coarsening dynamics of biaxial nematic liquid crystals
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We study the coarsening dynamics of two- and three-dimensional biaxial nematic liquid crystals, using
Langevin dynamics. Unlike previous work, we use a model withanpriori relationship among the three
elastic constants associated with director deformations. Biaxial nematics possess four topologically distinct
classes of defects, three of which have half-integer charge, while the fourth, which plays a minor role in
coarsening, is of integer charge. We find a rich variety of coarsening behavior, including the presence of one,
two, or three of the half-integer classes at late times, depending on the relative values of the elastic constants
and the resulting energetics of the decay channels of the defects. The morphology of the defect tangle in three
dimensions when all three classes are present is particularly interesting. Rather than forming independent
defect loopgas occurs when only one or two of the classes are preskatdefect lines meet at junction points
which are distributed uniformly throughout the system. As the system coarsens some pairs of neighboring
junction points approach each other and annihilate, allowing the formation of nonintersecting loops each
formed from a single defect class. These loops then shrink independently during the very final stages of the
coarsening sequence.
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Topological defects play an important role in the equili-
bration process following a quench from a disordered to an FgrafEM(&aQﬁy)(ﬁany)- (@]
ordered phas€‘coarsening dynamics). Coarsening dynam-
ics in nematic liquid crystals, particularly with uniaxial or-
dering, has been the subject of much active investigation Mere M is a coupling constant, an@, is the symmetric-

recent years in theory, experiments, and S|mqlat_[dns4], traceless nematic order parameter tensor. Repeated indices
in part because of the rich defect structure of liquid crystals.are summed over: in the case of a two-dimensional nematic
On the other hand, relatively little attentigwith the excep- ’ '

tion of the two-dimensional work of Ref2]) has been paid ¢ is summed ovek andy, while 5 andy are summed over
to coarsening dynamics in biaxial liquid crystals, in part be-X ¥» @ndz Zapotockyet al. found that of the four topologi-
cause of the dearth of experimental realizations of biaxiaf@!ly distinct classes of disclinations, only two clasgesth
liquid crystalline phases. However, biaxial nematics haveberresponding to “half-integer” defect points, i.e., 180° ro-
many unusual topological features, which might be expecteéfitions were present in large numbers at late times. Subse-
to influence their coarsening dynamics and thus warran@uently, Kobdaj and Thomafo] showed within this one-
study. Biaxial nematics differ from their uniaxial counter- elastic constant approximation that one class of half-integer
parts in that they possess four topologically distinct classegisclinations is always energetically unstable towards disso-
of line defects(disclinationg, while possessing no stable ciation into disclinations of the other two half-integer
point defects(except in two dimensions where the line de- classes.
fects reduce to point$5,6]. The classes of disclination lines In this paper we show that if one considers a more general
are distinguished by the rotation of the long and short axes afradient energy the coarsening dynamics of biaxial nematics
the rectangular building blocks of the system. In the firstis much richer than what occurs with the above simple
three classes one of the three axes is uniformly orderednodel. In particular, with appropriate sets of parameters one
while the remaining two axes rotate by 180° about the corean obtain a coarsening sequence with all three classes of
of the defect. The fourth class consists of 360° rotations ohalf-integer disclinations present in nearly equal numbers
two of the three axes. The disclination lines form closedeven at late times, or a sequence with only one class of
loops in three dimensionéwith a single defect class per half-integer disclinations surviving until late times. When all
loop) or form a network where three lines, each from a dif-three classes are present, the topology of the coarsening se-
ferent class meet at junction pointg]. The fundamental quence in three dimensions is markedly different from the
homotopy group of biaxial nematics is non-Abelian leadinguniaxial case.
to a number of interesting consequences. E.g., the merging of To understand why the model free energy of Bqg.is not
two defects will depend on the path they follow, and twogeneral enough for coarsening studies, it is helpful to see
180° disclinations of different types will be connected by awhat it yields for the director elastic constants. For biaxial
360° “umbilical” cord after crossing each oth€8]. nematics there are three directors which form an orthonormal
Zapotocky et al. [2] studied coarsening dynamics in a triad of vectorsu,v,w describing the alignment of the con-
two-dimensional model of biaxial nematics, utilizing a cell- stituent “bricklike” molecules; we assume that the longest
dynamical scheme applied to a Landau-Ginzburg modelaxis of the molecule is parallel . The tensoQ,,; can be
where the gradient portion of the energy was given by written in terms of the orthonormal triad as
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1 model of Eq.(1) it is now possible with appropriate choices
WoW g~ §5a,3) +T(uug—va0p),  (2)  of ST, and the ratid-/M to have all three elastic constants
equal (which will give rise as we demonstrate below to a
whereSandT are, respectively, the uniaxial and biaxial or- coarsening sequence with nearly equal populations of the
der parameters, ar®< 3T [2]. If we insert Eq.(2) into Eq. three classes of half-integer defectsr have two constants

QaB:S

(1), we find[10] nearly equal with the third significantly smaller, yielding a
coarsening sequence with only one class of defects at late
Fgra= Ku[ (U VV-W)Z+ (V- VV-w) 2+ (W Vw- v)?] times, or recover the behavior seen in Hé&f.

To simulate the coarsening dynamics of this general

KLV VW w2+ (U Vu-w)2+ (w- Vw- )] model of biaxial nematics, we consider its lattice analog in-

+ Ky [(W- VUu-v)2+ (u- Vu-v)2+(v- Vv-u)?], troduced by Straley11]. In this model the interaction be-
tween two biaxial objects located at siteandj of a cubic

() lattice with orientations specified by the orthonormal triad

where u,v,w is given by

_ 2 3
Ku=2MIS+D" Uiy = = 5 B0 ) 2= 25 (U 1) = (v;-p)?]
K,=2M(S—T)2, 5
K,=8MT2. @) _5[(Ui'Uj)2+(Vi'Vj)z—(Ui‘Vj)z—(Vi‘Uj)z]- (7)
Thus, there are three elastic constaktsK, ,K,, each cor- This model has a phase diagram with two uniaxial phases,
responding to one of the three classes of line defects. Eagbne with rodlike ordefalignment of thew vector field, one
class corresponds to rotations of two of the three vector fieldwith discotic order(alignment of theu vector field and a
u,v,w, about the defect core, with the third vector of the biaxial phase with alignment of all three vector fieldd -
triad undistorted. We denote the classes as follggyg|: C, 13].
(u undistorted, C,, (w undistorted, andC,, (v undistorted. The elastic constants emerging from Eg). can be deter-
The energy of a defect in cla€;, i =u,v,w is proportional mined by considering the interaction between two objects
to the elastic constark;. Note, however, that in the model Which are aligned in turn along each of the three directions
specified by Eq(1) only two of the three elastic constants u,v,w, with the results:
are independent, as they are related as indicated if4Edn

fact, the specific relationship among the three elastic con- K :3_:3_2y+ 4
u

stants gives rise, as shown in Rigf], to the presence of only 2 2’
two defect classes at late times. Irrespective of the values of

SandT (M simply sets the overall scale of all three elastic 38 é
constanty one of the three elastic constantaliwaysgreater KUZT +2y+ 27

than the sum of the other two, yielding a decay channel for

the defect in the class with the largest elastic constant. Ky=26. 8
There is no symmetry reason to restrict our attention to

the model free energy, E@L). Even if we neglect the elastic As in the continuum model E@3), the parameterg, v, and

anisotropy associated with bend, splay and twist distortions$ give rise to three independent elastic constants. Stability

a biaxial nematic should be described in general by threeequires that B+ 6>4|y|, and8,5>0. Note thaty— —y

independentelastic constantsK,, K,, and K,, [10]. In is equivalent to the interchange:v.

terms of the order parameter ten€py,, this requires a term As discussed in Ref$2,9], coarsening in a biaxial system

of third order inF g ,q, can proceed by annihilation via decay channels where a pair

of defects from two different classes annihilates to form a

1 defect of the third class. Specifically, we have three such
Fgrad_iM((?“QBV)((?“QBVHLQ“B(&PQ”)(&PQBV)’ channels here for the half-integer defect classes:
5
) C,+C,—C,, «a channel 9
which upon substituting Ed2) yields the elastic constants:
C,tC,—C,, B channel (10)
Ky=2[M(S+T)+LST|(S+T),

Cc,+C,—C,, v channel, (12)

K,=2[M(S—T)—-LST|(S-T),
with associated gains in free energy:

Ky=4(2M—LT)T?. (6)
AK, =K, +K,—K,=3-, (12
Because of the extra coupling constanthere is no prede-
termined hierarchy among these elastic constants. Unlike the AK =K, +K,—K,=25-4y, (13
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equally favorable. Thus, at this poifeand in its immediate
neighborhoodwe expect to see all three defect classes rep-
resented at late times in the coarsening sequence. Elsewhere
in regionD, two of the three decay channels will be favor-
~ able, leading to the survival of the corresponding defect
classes at late times.
L While these simple free energy arguments suggest what
the relative populations of the defect classes will be at dif-
ferent points in the parameter space of our model, they can-
~ not determine what the morphology of the defect tangle in
Unstable Unstable three dimensions will be. If two defect classes are present at
late times, are the loops entangled? If three defect classes are
present, do they form loops, each of a single defect class, or
a network of junction points where three defect lines, one
~ from each class meet?
To answer these questiofend verify that our free energy
1 arguments correctly describe the relative defect populgtions
-2 -1 0 1 2 we have simulated the coarsening dynamics associated with
Y the model Eq(7) using Langevin dynamics, expressing the
three unit vectorsv, u, andv in terms of Euler angleg, 6,
and ¢. The equations of motion are given by

\ / Ky, K, , andK,, are equal, and all three decay channels are
c c

[43]

FIG. 1. Parameter space for the model given by &g, with
B=1. The physically unstable regions on the left and right corre-
spond toK,<0 andK,<0, respectivelyi.e., 36+ 6<4|y|). The

boundary between regions and D is the line §=—2v, and the a_qﬁ' = _ ﬂ +R,(1),
boundary between regioisandD is the line§=2vy. The bound- at dpi ¢
aries of region®\—D are determined by the signs of the free energy
differencesAK, ,AKz,AK,,, as explained in the text. d COS0; oU
4 == +Ry(1),
at d cosé,
AK, =K, +Ky—Ky=26+4y, (14

tivel Wi Ry 15

respectively. l it o o(1), (15

Fig. 1 shows the parameter spage &) for the model Eq.

(7) with B=1. The space can be divided into nonoverlap-hereu is the sum ofU;; over the nearest neighbors of site
ping regions on the basls of the signs ADKC,,AKB_, and i, ¢ is a damping coefficient arid,(t),R,(t), andR,(t) are
AK,, . Based on these signs we expect the following behavyncorrelated random thermal noise sources. Each of the ran-
lor. dom variablesR has a Gaussian distribution of variance

RegionA. AK,,AKz>0,AK,<0. Thus, the decay chan- T/ st wherekg, T, andst are Boltzmann’s constant, the
nelsC,+C,—C, andC,+C,—C, are energetically favor- emperature, and the time step, respectively. We measured
able WhlIeCU+CW—>Cu_ is not; defects of clas€, should  {ime in units of 8 (choosingZ=1), and used a time step
not be present at late times. 5t=0.0005. A dynamical equation for césrather thané

RegionB. AK,,AK,>0, AK;z<0. Decay channel€, st be used in order to reach the correct equilibrium states
+C,—C,, and C,+C,—C, are energetically favorable [14] we verified that our dynamical equations led to the
while C,+C,,—C, is not; defects of clas§, shouldnotbe  same phase diagram produced by Monte Carlo simulations
present at late times. [12,13.

RegionC. AKg, AK,>0,AK,<0. Decay channel€, As in previous numerical studies of defect behavior

+Cy—C, and C,+C,—C, are energetically favorable 15 16, we introduce a disclination line segment counting
while C,+C,—C,, is not; defects of clas€,, shouldnotbe  gperator,

present at late times.

RegionD. AK,,AKz,AK,>0. All three decay channels w 1
are now favorable, but to varying degrees, depending on val- Dijii= 5 [1=Sgr{(w;-wj) (W;-wi) (Wi W) (W - Wi 1],
ues of y and 6. Near each of the vertices of the triangular (16)
regionD, two of the three channels involve free energy gains
that are very small. The remaining channel which correwwhich is unity if a disclination line segment pierces the lat-
sponds to a large free energy gain will dominate, and wdice square defined by the four siteg, k, andl. We define
expect a coarsening sequence with oaifie class of defects analogous operatom3;j,; and Df, for the u andv vectors
at late times. This class will b€, near the originy=46  on this lattice square. In principle, either two or none of the
=0; C, near the vertex where regioBsC, andD meet, and three operators should be unity for a given square, and thus
C, near the remaining vertex where regioAsC, andD  we can assign the line segment to one of the claBge<, ,
meet. At the pointy=0, =1, the three elastic constants or C,,. In practice, we found a small number of squares
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FIG. 2. Log-log plot of the total line length &, (O), C,(O),

and C,(A) class defects for system size34tand parametersy
=1/2, 5=4+?/3=1/3 (corresponding to regioB in Fig. 1), as a
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FIG. 3. Log-log plot of the total line length &, (O), C,,(0),
andC,(A) class defects for system size #92nd parametery
=1/2, 6=4%/3=1/3 (corresponding to regioB in Fig. 1), as a
function of dimensionless time after the quench. The data has been
averaged over 80 initial random configurations. Similar behavior is
shown in Fig. 22 of Ref{2].

function of dimensionless time after the quench. The data has been
averaged over 60 initial random configurations. The straight line

shown at the top of the figure is a power-law(6ffset from the data
for the sake of clarity of the decay with an exponent 0.86.

where only one or all three operators were unity, an artifac

times, as well as the parametrization of Eg) used in Refs.
[12,13, where §=4v?/3 was chosen. In Fig. 4 we show a
snapshot of the simulation cell late in the coarsening se-
fluence for the same set of parameters as in Fig. 2.0he

of the discreteness of the underlying lattice. We obtained
physically reasonable results by classifying the defects on
the basis of the operatolj;,; and Djj,,, assuming that

Dij was unity only ifoneof the two former operators was /

unity. This procedure always yielded closed defect loops in /
three dimensions, a reasonable test of our algorithm. We de-
termined the location of the integer-valued defects where ei-
ther w or u (or both rotate by =360° degrees using the
algorithm of Ref.[4] which provides an upper bound on
these defects. We found very few integer-valued defects us-
ing this method, so a more accurate algorithm is not needed.

We quenched the system instantaneously from an initial
configuration of random orientations of the three vectors
u,v,w (i.e., a high temperature stat® zero temperaturéa
biaxially ordered state for ab#0), and then let the system
evolve in time according to the dynamical equatidi$)
monitoring the defect populations both visually and statisti-
cally. We studied the model in both two and three dimen-
sions.

In agreement with our arguments above regarding the pre- /
ferred decay channels, we found three qualitatively distinct | |
types of coarsening behavior depending on the valueg of /
andé (we setB=1). In regionsA andB of Fig. 1 we found i
a late time coarsening sequence with two defect classes
present, consistent with the energy arguments given above.

/

/
/

The total line length for each of the three defect classes for k|G, 4. The configuration o€, (thin line) and C,, (bold line)

system parameters at a point in regBris shown in Fig. 2

class defects for the same system parameters used in Fig. 2, at

for a three-dimensional system and in Fig. 3 for a two-dimensionless time 80 after the quench. Note thaCalclass de-
dimensional system. Regidhincludes the model studied in fects have vanished at this late time. T8g and C,, form nonin-

Ref. [2] (where two defect classes were observed at lateersecting loops which coarsen independently.
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FIG. 5. Log-log plot of the total line length &, (O), C,(O), FIG. 6. Log-log plot of the total line length &, (O), C,,(00),

and C,(A) class defects for system size34tand parametersy and C,(A) class defects for system size®4tand parametery

=0, §=3.5(corresponding to region C in Fig),las a function of =1.3, §=2.8 (corresponding to regioB in Fig. 1, near the inter-

dimensionless time after the quench. The data has been averagsection with region€ andB), as a function of dimensionless time

over 80 initial random configurations. The straight line shown at theafter the quench. The data has been averaged over 80 initial random

top of the figure is a power-law fipffset from the data for the sake configurations. The straight line shown at the top of the figure is a

of clarity) of the decay with an exponent 0.83. power-law fit (offset from the data for the sake of clajitgf the
decay with an exponent 1.01.

class defects have disappeared andGhendC,, class de-
fects remain as nonintersecting closed loops. The behavior in
region A is qualitatively similar with the interchange &,
andC, defects. The coarsening behavior in reglis quali-
tatively similar to that observed in regiodsand B, except
now the surviving defects are those in clas€gsandC, .

The total line length for each of the defect classes for a
system in regiorC is shown in Fig. 5.

For all parametrizations simulated where coarsening at
late times involved two classes of defects we never saw ap-
parent line crossings, entanglements, or junction pdities
latter obviously would require three classes of defedibe
two classes of loops appear to coarsen independently, as car
be seen in the animations on our web $it&].

A coarsening sequence with late time survival of only one
class of defects appears, as expected from our energy argu-
ments, in regiorD, near any of the vertices. For example,
with y=0.3, §=2.8, (near the vertex where regior C,
and D mee} we find total line lengths as shown in Fig. 6. , , .
The C, defects survive at late times, consistent with our 0 1 10 100
arguments above. Time

The most interesting and novel coarsening sequence oc- FIG. 7. Log-log plot of the total line length &, (O), C,, (C1),

.curs. wheny=0 and 5=1. .For these parameters E() andC, (A) class defects for system size 358vith parametersy
implies that all three elastic constants are equal, and WE o, 5=1 (where all three elastic constants are eyju a function

found a coarsening sequence with nearly equal populationg gimensionless time after the quench. The data has been averaged
of the three defects, as shown in Figs. 7 and 8 for @ tWogyer 60 initial random configurations. While, in principle, the popu-
dimensional and a three-dimensional system, respectivelyation of the three classes of defects should be equal immediately
This behavior persists over a range of paramei®rsl.0  after the quench, there is a small difference in these populations due
+0.5 andy~0.0=0.2. Beyond this range the three decayto the numerical issues discussed in the text following ).
channels, Eqgs(9)—(11), have sufficiently different gains in Note, however, that the data points for 8¢ (O) and C,, ()

free energy, Eqs(12)—(14), such that one or two defect classes do overlap.

10000 T T T

1000 |

100
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FIG. 8. Log-log plot of the total line length &, (O), C,, (O), / ¥
andC, (A) class defects for system size®6@nd parametersy _f ¥
=0, 6=1 (where all three elastic constants are ejjuas a function ___—————_______ i o0 Fd
of dimensionless time after the quench. The data has been averagec ]

over 40 initial random configurations. The straight line shown at the ) ) o )
top of the figure is a power-law fit of the decay with an exponent  F!G- 9- The configuration o€, (thin line), C, (dotted ling, and
0.85. While, in principle, the population of the three classes ofCw (Pold line), class defects for system size*4@nd parameters
defects should be equal immediately after the quench, there is =0+ =1 (where all three elastic constants are efjua dimen-
small difference in these populations due to the numerical issueSoniess time 60 after the quench.
discussed in the text following Eq16). Note, however, that the ) ) ) ] )
data points for the, (O) andC,, () classes do overlap. We examined the structure of the junction points, in par-
ticular, whether the three disclination line segments meeting
classegdepending on the values gfand§) dominate at late at a point are coplanar as one might expect from consider-
times. The coarsening sequence for the range of parameteagions of force balance. We found most, but not all, of the
where the three defect classes are present in nearly equadints have a coplanar geometry. We also examined the na-
numbers is particularly interesting in three dimensions. Wgure of the crossover from the region of the parameter space
do not find independent loops for each of the defect classesvhere a network of junction points forms to the regions
Rather, soon after the quench a uniform network of junctiorwhere only one or two defect classes are present at late
points where three disclination lingsne from each of the times. Asy and(or) or § are varied away from the point
three half-integer classesneet is formed. These junction =0, 6=1, we find a network of points where the disclina-
points are illustrated in Fig. 9 at late times after the quenchtion line segments corresponding to the unfavorable defect
The junction points are distributed in a nearly uniform fash-class or classes becoming progressively shorter. Finally, as
ion throughout the simulation cell, and the distance betweethe parameters are varied further, the junction points disap-
neighboring points grows on average with tifd&’]. When  pear completely, and independent loops remain.
the distance between neighboring junction points becomes According to the dynamical scaling hypothegis], the
comparable with the size of the simulation c@lee Fig. 9 ~ total line length of the disclinations in a uniaxial nematic
the coarsening process is impeded. The final annihilation ohould decay ag ™!, though in numerical experiments
the disclination lines can only occur via the shrinkage ofsmaller values of the exponent, of order 0.85-0.90 are typi-
individual loops. The formation of loops requires that somecally seen2]. We have found an exponent of 1.01 when our
pairs of neighboring junction points approach each otherpiaxial system is quenched to a point where only a single
shrinking the line joining them while possibly increasing the class of defect dominate$ig. 6), and exponents of order
length of the other two disclination lines attached to the pail0.85 when the system is quenched to a point where either
of junction points. Ultimately, the pair of junction points two or three defect classes dominate at late tifiseg Figs.
meet at a “pinch point,” where four disclination line seg- 2, 5, and 8. It is interesting to note that even in the case of
ments corresponding to two defect classes meet. Substhree defect classéBig. 8), there is no significant difference
quently the four line segments dissociate into two noninterin the exponent, even though the mechanism of coarsening is
secting single class line segments as can be seen in Fig. f@ite different, as it involves the annihilation of the junction
and in our animationgl7]. When this process has occurred a points.
sufficient number of times, individual disclination loops are  In conclusion, we have shown that the coarsening dynam-
formed which then shrink independently. ics of biaxial nematics is very rich, with late time behavior
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/ & / / FIG. 10. Snapshots of the simulation cell at
Fi Fi ;r £ four successive dimensionless time stepsg85
e S —— r.--’r e ¥ (top left), t=95 (top right), t=97 (bottom lefd,

R g andt= 100 (bottom righ} with t=0 correspond-
— — ing to the quench. The snapshots illustrate the
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governed by either one, two, or three classes of half-integgpresent at late times, a network of junction points is formed
line defects, depending on the parameters of the systerand a novel coarsening sequence occurs as neighboring
Simple free energy considerations of the allowed decayoints annihilate to allow the creation of independent loops.
channels where defects from two different classes annihilate

to form a defect from the third class, allow us to qualitatively ~We thank S. C. Ying, J. M. Kosterlitz, and M. Zapotocky
predict the relative populations of the defect classes at latéor helpful discussions, and G. B. Loriot for computational
times. The predictions of these arguments were confirmed bgssistance. This work was supported by the National Science
numerical simulation. Line crossings or entanglements weré&oundation under Grant No. DMR-9873849. Computational
never observed in the coarsening sequence. When the paramerk in support of this research was performed at Brown
eters of the system are such that all three defect classes domiversity’s Theoretical Physics Computing Facility.
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