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Coarsening dynamics of biaxial nematic liquid crystals

N. V. Priezjev and Robert A. Pelcovits
Department of Physics, Brown University, Providence, Rhode Island 02912

~Received 27 June 2002; published 13 November 2002!

We study the coarsening dynamics of two- and three-dimensional biaxial nematic liquid crystals, using
Langevin dynamics. Unlike previous work, we use a model with noa priori relationship among the three
elastic constants associated with director deformations. Biaxial nematics possess four topologically distinct
classes of defects, three of which have half-integer charge, while the fourth, which plays a minor role in
coarsening, is of integer charge. We find a rich variety of coarsening behavior, including the presence of one,
two, or three of the half-integer classes at late times, depending on the relative values of the elastic constants
and the resulting energetics of the decay channels of the defects. The morphology of the defect tangle in three
dimensions when all three classes are present is particularly interesting. Rather than forming independent
defect loops~as occurs when only one or two of the classes are present!, the defect lines meet at junction points
which are distributed uniformly throughout the system. As the system coarsens some pairs of neighboring
junction points approach each other and annihilate, allowing the formation of nonintersecting loops each
formed from a single defect class. These loops then shrink independently during the very final stages of the
coarsening sequence.

DOI: 10.1103/PhysRevE.66.051705 PACS number~s!: 64.70.Md, 61.30.Jf
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Topological defects play an important role in the equ
bration process following a quench from a disordered to
ordered phase~‘‘coarsening dynamics’’!. Coarsening dynam
ics in nematic liquid crystals, particularly with uniaxial o
dering, has been the subject of much active investigatio
recent years in theory, experiments, and simulations@1–4#,
in part because of the rich defect structure of liquid crysta
On the other hand, relatively little attention~with the excep-
tion of the two-dimensional work of Ref.@2#! has been paid
to coarsening dynamics in biaxial liquid crystals, in part b
cause of the dearth of experimental realizations of bia
liquid crystalline phases. However, biaxial nematics ha
many unusual topological features, which might be expec
to influence their coarsening dynamics and thus warr
study. Biaxial nematics differ from their uniaxial counte
parts in that they possess four topologically distinct clas
of line defects~disclinations!, while possessing no stabl
point defects~except in two dimensions where the line d
fects reduce to points! @5,6#. The classes of disclination line
are distinguished by the rotation of the long and short axe
the rectangular building blocks of the system. In the fi
three classes one of the three axes is uniformly orde
while the remaining two axes rotate by 180° about the c
of the defect. The fourth class consists of 360° rotations
two of the three axes. The disclination lines form clos
loops in three dimensions~with a single defect class pe
loop! or form a network where three lines, each from a d
ferent class meet at junction points@7#. The fundamental
homotopy group of biaxial nematics is non-Abelian leadi
to a number of interesting consequences. E.g., the mergin
two defects will depend on the path they follow, and tw
180° disclinations of different types will be connected by
360° ‘‘umbilical’’ cord after crossing each other@8#.

Zapotocky et al. @2# studied coarsening dynamics in
two-dimensional model of biaxial nematics, utilizing a ce
dynamical scheme applied to a Landau-Ginzburg mo
where the gradient portion of the energy was given by
1063-651X/2002/66~5!/051705~7!/$20.00 66 0517
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M ~]aQbg!~]aQbg!. ~1!

Here M is a coupling constant, andQab is the symmetric-
traceless nematic order parameter tensor. Repeated in
are summed over; in the case of a two-dimensional nema
a is summed overx andy, while b andg are summed over
x, y, andz. Zapotockyet al. found that of the four topologi-
cally distinct classes of disclinations, only two classes~both
corresponding to ‘‘half-integer’’ defect points, i.e., 180° r
tations! were present in large numbers at late times. Sub
quently, Kobdaj and Thomas@9# showed within this one-
elastic constant approximation that one class of half-inte
disclinations is always energetically unstable towards dis
ciation into disclinations of the other two half-intege
classes.

In this paper we show that if one considers a more gen
gradient energy the coarsening dynamics of biaxial nema
is much richer than what occurs with the above sim
model. In particular, with appropriate sets of parameters
can obtain a coarsening sequence with all three classe
half-integer disclinations present in nearly equal numb
even at late times, or a sequence with only one class
half-integer disclinations surviving until late times. When a
three classes are present, the topology of the coarsenin
quence in three dimensions is markedly different from
uniaxial case.

To understand why the model free energy of Eq.~1! is not
general enough for coarsening studies, it is helpful to
what it yields for the director elastic constants. For biax
nematics there are three directors which form an orthonor
triad of vectorsu,v,w describing the alignment of the con
stituent ‘‘bricklike’’ molecules; we assume that the longe
axis of the molecule is parallel tow. The tensorQab can be
written in terms of the orthonormal triad as
©2002 The American Physical Society05-1
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Qab5SS wawb2
1

3
dabD1T~uaub2vavb!, ~2!

whereS andT are, respectively, the uniaxial and biaxial o
der parameters, andS,3T @2#. If we insert Eq.~2! into Eq.
~1!, we find @10#

Fgrad5Ku@~u•“v•w!21~v•“v•w!21~w•“w•v!2#

1Kv@~v•“w•u!21~u•“u•w!21~w•“w•u!2#

1Kw@~w•“u•v!21~u•“u•v!21~v•“v•u!2#,

~3!

where

Ku52M ~S1T!2,

Kv52M ~S2T!2,

Kw58MT2. ~4!

Thus, there are three elastic constantsKu ,Kv ,Kw each cor-
responding to one of the three classes of line defects. E
class corresponds to rotations of two of the three vector fie
u,v,w, about the defect core, with the third vector of t
triad undistorted. We denote the classes as follows@6,7#: Cu
(u undistorted!, Cw (w undistorted!, andCv (v undistorted!.
The energy of a defect in classCi , i 5u,v,w is proportional
to the elastic constantKi . Note, however, that in the mode
specified by Eq.~1! only two of the three elastic constan
are independent, as they are related as indicated in Eq.~4!. In
fact, the specific relationship among the three elastic c
stants gives rise, as shown in Ref.@9#, to the presence of only
two defect classes at late times. Irrespective of the value
S andT (M simply sets the overall scale of all three elas
constants!, one of the three elastic constants isalwaysgreater
than the sum of the other two, yielding a decay channel
the defect in the class with the largest elastic constant.

There is no symmetry reason to restrict our attention
the model free energy, Eq.~1!. Even if we neglect the elasti
anisotropy associated with bend, splay and twist distortio
a biaxial nematic should be described in general by th
independentelastic constants,Ku , Kv , and Kw @10#. In
terms of the order parameter tensorQab , this requires a term
of third order inFgrad,

Fgrad5
1

2
M ~]aQbg!~]aQbg!1LQab~]rQag!~]rQbg!,

~5!

which upon substituting Eq.~2! yields the elastic constants

Ku52@M ~S1T!1LST#~S1T!,

Kv52@M ~S2T!2LST#~S2T!,

Kw54~2M2LT!T2. ~6!

Because of the extra coupling constantL, there is no prede-
termined hierarchy among these elastic constants. Unlike
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model of Eq.~1! it is now possible with appropriate choice
of S,T, and the ratioL/M to have all three elastic constan
equal ~which will give rise as we demonstrate below to
coarsening sequence with nearly equal populations of
three classes of half-integer defects!, or have two constants
nearly equal with the third significantly smaller, yielding
coarsening sequence with only one class of defects at
times, or recover the behavior seen in Ref.@2#.

To simulate the coarsening dynamics of this gene
model of biaxial nematics, we consider its lattice analog
troduced by Straley@11#. In this model the interaction be
tween two biaxial objects located at sitesi and j of a cubic
lattice with orientations specified by the orthonormal tri
u,v,w is given by

Ui j 52
3

2
b~wi•wj !

222g@~ui•uj !
22~vi•vj !

2#

2
d

2
@~ui•uj !

21~vi•vj !
22~ui•vj !

22~vi•uj !
2#. ~7!

This model has a phase diagram with two uniaxial phas
one with rodlike order~alignment of thew vector field!, one
with discotic order~alignment of theu vector field! and a
biaxial phase with alignment of all three vector fields@11–
13#.

The elastic constants emerging from Eq.~7! can be deter-
mined by considering the interaction between two obje
which are aligned in turn along each of the three directio
u,v,w, with the results:

Ku5
3b

2
22g1

d

2
,

Kv5
3b

2
12g1

d

2
,

Kw52d. ~8!

As in the continuum model Eq.~3!, the parametersb, g, and
d give rise to three independent elastic constants. Stab
requires that 3b1d.4ugu, andb,d.0. Note thatg→2g
is equivalent to the interchange:u↔v.

As discussed in Refs.@2,9#, coarsening in a biaxial system
can proceed by annihilation via decay channels where a
of defects from two different classes annihilates to form
defect of the third class. Specifically, we have three su
channels here for the half-integer defect classes:

Cu1Cv→Cw , a channel ~9!

Cu1Cw→Cv , b channel ~10!

Cv1Cw→Cu , g channel, ~11!

with associated gains in free energy:

DKa[Ku1Kv2Kw532d, ~12!

DKb[Ku1Kw2Kv52d24g, ~13!
5-2
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DKg[Kv1Kw2Ku52d14g, ~14!

respectively.
Fig. 1 shows the parameter space (g,d) for the model Eq.

~7! with b51. The space can be divided into nonoverla
ping regions on the basis of the signs ofDKa ,DKb , and
DKg . Based on these signs we expect the following beh
ior:

RegionA. DKa ,DKb.0, DKg,0. Thus, the decay chan
nelsCu1Cv→Cw andCu1Cw→Cv are energetically favor-
able whileCv1Cw→Cu is not; defects of classCu should
not be present at late times.

Region B. DKa ,DKg.0, DKb,0. Decay channelsCu
1Cv→Cw and Cv1Cw→Cu are energetically favorable
while Cu1Cw→Cv is not; defects of classCv shouldnot be
present at late times.

Region C. DKb , DKg.0,DKa,0. Decay channelsCu
1Cw→Cv and Cv1Cw→Cu are energetically favorable
while Cu1Cv→Cw is not; defects of classCw shouldnot be
present at late times.

RegionD. DKa ,DKb ,DKg.0. All three decay channel
are now favorable, but to varying degrees, depending on
ues ofg and d. Near each of the vertices of the triangul
regionD, two of the three channels involve free energy ga
that are very small. The remaining channel which cor
sponds to a large free energy gain will dominate, and
expect a coarsening sequence with onlyoneclass of defects
at late times. This class will beCw near the origing5d
50; Cu near the vertex where regionsB, C, andD meet, and
Cv near the remaining vertex where regionsA, C, and D
meet. At the pointg50, d51, the three elastic constan

FIG. 1. Parameter space for the model given by Eq.~7!, with
b51. The physically unstable regions on the left and right cor
spond toKv,0 andKu,0, respectively~i.e., 3b1d,4ugu). The
boundary between regionsA and D is the lined522g, and the
boundary between regionsB andD is the lined52g. The bound-
aries of regionsA–D are determined by the signs of the free ener
differencesDKa ,DKb ,DKg , as explained in the text.
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Ku , Kv , andKw are equal, and all three decay channels
equally favorable. Thus, at this point~and in its immediate
neighborhood! we expect to see all three defect classes r
resented at late times in the coarsening sequence. Elsew
in regionD, two of the three decay channels will be favo
able, leading to the survival of the corresponding def
classes at late times.

While these simple free energy arguments suggest w
the relative populations of the defect classes will be at d
ferent points in the parameter space of our model, they c
not determine what the morphology of the defect tangle
three dimensions will be. If two defect classes are presen
late times, are the loops entangled? If three defect classe
present, do they form loops, each of a single defect class
a network of junction points where three defect lines, o
from each class meet?

To answer these questions~and verify that our free energy
arguments correctly describe the relative defect populatio!,
we have simulated the coarsening dynamics associated
the model Eq.~7! using Langevin dynamics, expressing th
three unit vectorsw, u, andv in terms of Euler anglesf, u,
andc. The equations of motion are given by

z
]f i

]t
52

]U

]f i
1Rf~ t !,

z
] cosu i

]t
52

]U

] cosu i
1Ru~ t !,

z
]c i

]t
52

]U

]c i
1Rc~ t !, ~15!

whereU is the sum ofUi j over the nearest neighbors of si
i, z is a damping coefficient andRf(t),Ru(t), andRc(t) are
uncorrelated random thermal noise sources. Each of the
dom variablesR has a Gaussian distribution of varianc
2kBTz/dt wherekB , T, anddt are Boltzmann’s constant, th
temperature, and the time step, respectively. We meas
time in units of b ~choosingz51), and used a time ste
dt50.0005. A dynamical equation for cosu rather thanu
must be used in order to reach the correct equilibrium sta
@14#. We verified that our dynamical equations led to t
same phase diagram produced by Monte Carlo simulat
@12,13#.

As in previous numerical studies of defect behav
@15,16#, we introduce a disclination line segment counti
operator,

Di jkl
w [

1

2
@12sgn$~wi•wj !~wj•wk!~wk•wl !~wl•wi !%#,

~16!

which is unity if a disclination line segment pierces the la
tice square defined by the four sitesi, j, k, and l. We define
analogous operatorsDi jkl

u and Di jkl
v for the u and v vectors

on this lattice square. In principle, either two or none of t
three operators should be unity for a given square, and
we can assign the line segment to one of the classesCu , Cv ,
or Cw . In practice, we found a small number of squar

-

5-3
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where only one or all three operators were unity, an artif
of the discreteness of the underlying lattice. We obtain
physically reasonable results by classifying the defects
the basis of the operatorsDi jkl

u and Di jkl
w , assuming that

Di jkl
v was unity only ifoneof the two former operators wa

unity. This procedure always yielded closed defect loops
three dimensions, a reasonable test of our algorithm. We
termined the location of the integer-valued defects where
ther w or u ~or both! rotate by6360° degrees using th
algorithm of Ref. @4# which provides an upper bound o
these defects. We found very few integer-valued defects
ing this method, so a more accurate algorithm is not nee

We quenched the system instantaneously from an in
configuration of random orientations of the three vect
u,v,w ~i.e., a high temperature state! to zero temperature~a
biaxially ordered state for alld5” 0), and then let the system
evolve in time according to the dynamical equations~15!
monitoring the defect populations both visually and stati
cally. We studied the model in both two and three dime
sions.

In agreement with our arguments above regarding the
ferred decay channels, we found three qualitatively disti
types of coarsening behavior depending on the values og
andd ~we setb51). In regionsA andB of Fig. 1 we found
a late time coarsening sequence with two defect clas
present, consistent with the energy arguments given ab
The total line length for each of the three defect classes
system parameters at a point in regionB is shown in Fig. 2
for a three-dimensional system and in Fig. 3 for a tw
dimensional system. RegionB includes the model studied i
Ref. @2# ~where two defect classes were observed at

FIG. 2. Log-log plot of the total line length ofCv (s), Cw(h),
and Cu(n) class defects for system size 403, and parametersg
51/2, d54g2/351/3 ~corresponding to regionB in Fig. 1!, as a
function of dimensionless time after the quench. The data has b
averaged over 60 initial random configurations. The straight
shown at the top of the figure is a power-law fit~offset from the data
for the sake of clarity! of the decay with an exponent 0.86.
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times!, as well as the parametrization of Eq.~2! used in Refs.
@12,13#, whered54g2/3 was chosen. In Fig. 4 we show
snapshot of the simulation cell late in the coarsening
quence for the same set of parameters as in Fig. 2. TheCv

en
e

FIG. 3. Log-log plot of the total line length ofCv (s), Cw(h),
and Cu(n) class defects for system size 1922, and parametersg
51/2, d54g2/351/3 ~corresponding to regionB in Fig. 1!, as a
function of dimensionless time after the quench. The data has b
averaged over 80 initial random configurations. Similar behavio
shown in Fig. 22 of Ref.@2#.

FIG. 4. The configuration ofCu ~thin line! and Cw ~bold line!
class defects for the same system parameters used in Fig.
dimensionless time 80 after the quench. Note that allCv class de-
fects have vanished at this late time. TheCw and Cu form nonin-
tersecting loops which coarsen independently.
5-4
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class defects have disappeared and theCu andCw class de-
fects remain as nonintersecting closed loops. The behavi
region A is qualitatively similar with the interchange ofCu
andCv defects. The coarsening behavior in regionC is quali-
tatively similar to that observed in regionsA and B, except
now the surviving defects are those in classesCu and Cv .
The total line length for each of the defect classes fo
system in regionC is shown in Fig. 5.

For all parametrizations simulated where coarsening
late times involved two classes of defects we never saw
parent line crossings, entanglements, or junction points~the
latter obviously would require three classes of defects!. The
two classes of loops appear to coarsen independently, as
be seen in the animations on our web site@17#.

A coarsening sequence with late time survival of only o
class of defects appears, as expected from our energy a
ments, in regionD, near any of the vertices. For exampl
with g50.3, d52.8, ~near the vertex where regionsB, C,
and D meet! we find total line lengths as shown in Fig.
The Cu defects survive at late times, consistent with o
arguments above.

The most interesting and novel coarsening sequence
curs wheng50 and d51. For these parameters Eq.~8!
implies that all three elastic constants are equal, and
found a coarsening sequence with nearly equal populat
of the three defects, as shown in Figs. 7 and 8 for a tw
dimensional and a three-dimensional system, respectiv
This behavior persists over a range of parametersd;1.0
60.5 andg;0.060.2. Beyond this range the three dec
channels, Eqs.~9!–~11!, have sufficiently different gains in
free energy, Eqs.~12!–~14!, such that one or two defec

FIG. 5. Log-log plot of the total line length ofCv (s), Cw(h),
and Cu(n) class defects for system size 403, and parametersg
50, d53.5 ~corresponding to region C in Fig. 1!, as a function of
dimensionless time after the quench. The data has been ave
over 80 initial random configurations. The straight line shown at
top of the figure is a power-law fit~offset from the data for the sak
of clarity! of the decay with an exponent 0.83.
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FIG. 6. Log-log plot of the total line length ofCv (s), Cw(h),
and Cu(n) class defects for system size 403, and parametersg
51.3, d52.8 ~corresponding to regionD in Fig. 1, near the inter-
section with regionsC andB), as a function of dimensionless tim
after the quench. The data has been averaged over 80 initial ran
configurations. The straight line shown at the top of the figure i
power-law fit ~offset from the data for the sake of clarity! of the
decay with an exponent 1.01.

FIG. 7. Log-log plot of the total line length ofCv (s), Cw (h),
andCu (n) class defects for system size 2562, with parametersg
50, d51 ~where all three elastic constants are equal!, as a function
of dimensionless time after the quench. The data has been aver
over 60 initial random configurations. While, in principle, the pop
lation of the three classes of defects should be equal immedia
after the quench, there is a small difference in these populations
to the numerical issues discussed in the text following Eq.~16!.
Note, however, that the data points for theCv (s) and Cw (h)
classes do overlap.
5-5
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classes~depending on the values ofg andd) dominate at late
times. The coarsening sequence for the range of param
where the three defect classes are present in nearly e
numbers is particularly interesting in three dimensions.
do not find independent loops for each of the defect clas
Rather, soon after the quench a uniform network of junct
points where three disclination lines~one from each of the
three half-integer classes! meet is formed. These junctio
points are illustrated in Fig. 9 at late times after the quen
The junction points are distributed in a nearly uniform fas
ion throughout the simulation cell, and the distance betw
neighboring points grows on average with time@17#. When
the distance between neighboring junction points beco
comparable with the size of the simulation cell~see Fig. 9!,
the coarsening process is impeded. The final annihilation
the disclination lines can only occur via the shrinkage
individual loops. The formation of loops requires that som
pairs of neighboring junction points approach each oth
shrinking the line joining them while possibly increasing t
length of the other two disclination lines attached to the p
of junction points. Ultimately, the pair of junction point
meet at a ‘‘pinch point,’’ where four disclination line seg
ments corresponding to two defect classes meet. Su
quently the four line segments dissociate into two nonin
secting single class line segments as can be seen in Fig
and in our animations@17#. When this process has occurred
sufficient number of times, individual disclination loops a
formed which then shrink independently.

FIG. 8. Log-log plot of the total line length ofCv (s), Cw (h),
and Cu (n) class defects for system size 603, and parametersg
50, d51 ~where all three elastic constants are equal!, as a function
of dimensionless time after the quench. The data has been ave
over 40 initial random configurations. The straight line shown at
top of the figure is a power-law fit of the decay with an expon
0.85. While, in principle, the population of the three classes
defects should be equal immediately after the quench, there
small difference in these populations due to the numerical iss
discussed in the text following Eq.~16!. Note, however, that the
data points for theCv (s) andCw (h) classes do overlap.
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We examined the structure of the junction points, in p
ticular, whether the three disclination line segments mee
at a point are coplanar as one might expect from consid
ations of force balance. We found most, but not all, of t
points have a coplanar geometry. We also examined the
ture of the crossover from the region of the parameter sp
where a network of junction points forms to the regio
where only one or two defect classes are present at
times. Asg and ~or! or d are varied away from the pointg
50, d51, we find a network of points where the disclin
tion line segments corresponding to the unfavorable de
class or classes becoming progressively shorter. Finally
the parameters are varied further, the junction points dis
pear completely, and independent loops remain.

According to the dynamical scaling hypothesis@18#, the
total line length of the disclinations in a uniaxial nema
should decay ast21, though in numerical experiment
smaller values of the exponent, of order 0.85–0.90 are ty
cally seen@2#. We have found an exponent of 1.01 when o
biaxial system is quenched to a point where only a sin
class of defect dominates~Fig. 6!, and exponents of orde
0.85 when the system is quenched to a point where ei
two or three defect classes dominate at late times~see Figs.
2, 5, and 8!. It is interesting to note that even in the case
three defect classes~Fig. 8!, there is no significant difference
in the exponent, even though the mechanism of coarsenin
quite different, as it involves the annihilation of the junctio
points.

In conclusion, we have shown that the coarsening dyna
ics of biaxial nematics is very rich, with late time behavi

ged
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FIG. 9. The configuration ofCu ~thin line!, Cv ~dotted line!, and
Cw ~bold line!, class defects for system size 403, and parameters
g50, d51 ~where all three elastic constants are equal!, at dimen-
sionless time 60 after the quench.
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FIG. 10. Snapshots of the simulation cell
four successive dimensionless time steps,t585
~top left!, t595 ~top right!, t597 ~bottom left!,
and t5100 ~bottom right! with t50 correspond-
ing to the quench. The snapshots illustrate t
process by which a pair of junction points ann
hilate, leaving two independent disclinatio
loops.
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governed by either one, two, or three classes of half-inte
line defects, depending on the parameters of the sys
Simple free energy considerations of the allowed de
channels where defects from two different classes annih
to form a defect from the third class, allow us to qualitative
predict the relative populations of the defect classes at
times. The predictions of these arguments were confirmed
numerical simulation. Line crossings or entanglements w
never observed in the coarsening sequence. When the pa
eters of the system are such that all three defect classe
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present at late times, a network of junction points is form
and a novel coarsening sequence occurs as neighbo
points annihilate to allow the creation of independent loo
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