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INTRODUCTION 

Complex and dynamic real world domains (e.g., command and control, process 
control, air traffic control) require individuals to complete tasks that are difficult 
and involve significant risks. There is a great deal of interest in developing 
automated instructional systems that will allow an individual to acquire the 
required expertise without the associated risk and cost of training on actual 
equipment. One approach to automated instruction for these domains is the 
provision of a computerized simulation that replicates the domain of interest. A 
simulation provides one primary requirement for successful instruction: it allows 
an individual to acquire necessary skills and knowledge while actively solving 
domain problems. Simulations vary with respect to how well the physical ap- 
pearance and dynamic behavior of a domain is replicated. In high-fidelity simu- 
lations the training system looks and acts just like the actual system. In low- 
fidelity simulations the emphasis is on providing instruction for the fundamental 
skills that underlay performance (Johnson, 1987). There are advantages and 
disadvantages to each end of the spectrum, and it is possible that instructional 
programs might be made more effective by incorporating simulations with vary- 
ing levels of fidelity (Rouse, 1982). 

One important issue in the design of simulation training environments is how 
to use the computational power that recent advances in computer science and 
artificial intelligence have provided. One approach is to develop and incorporate 
intelligent machine tutors. Int-ent tutors can provide advice, instruction, or 
explanation that (dynan~icallyichange^as a function of the current situation and 
the individual's mastery of the topic at hand. With rare exceptions (e.g., Woolf, 
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Blegen, & Jansen, & Verloop, 1987). intelligent tutors have not been incorporat- 
ed into simulations for complex, dynamic domains. This is probably due to both 
the inherent complexity of these domains and the amount and types of knowledge 
(declarative knowledge, procedural knowledge, causal reasoning, psychomotor 
skills, and meta-cognitive skills) required for successful performance. Both of 
these factors create difficulties for the development of sophisticated student 
diagnosis and student modeling modules. One challenge that designers of simu- 
lation training environments face is how to incorporate this capability. 

With the vast potential that intelligent machine tutors provide, it is easy to 
overlook other uses of computational power that can also improve the effective- 
ness of automated instruction. One technique is representation aiding (Hollan, 
Hutchins, & Weitzman, 1984; Woods & Roth, 1988). where machine power is 
used to create and manipulate representations of the domain. Direct representa- 
tion and direct manipulation can help an individual find the relevant data in a 
dynamic environment, to visualize the semantics of the domain (i.e., make 
concrete the abstract), and to restructure his or her view of the problem. This can 
be an indispensable aid in facilitating understanding and performance. However, 
many issues must be resolved in the development of direct representation and 
direct manipulation interfaces. For example, which conceptual perspectives, of 
the nearly infinite number of alternatives, should be provided? What design 
perspectives are available to guide the mapping of information from the domain 
to the representation aids? 

A third use of computational power is the provision of computerized tools and 
resources that allow discovery learning. In discovery learning, a student is en- 
couraged to actively explore a domain, and computerized tools are provided to 
assist the student in the formation and testing of hypotheses about that domain 
(e.g., Shute & Glaser, 1990). The assumption is that actively exploring and 
experiencing the important domain concepts will result in more effective instruc- 6 As with the development of '7 

uestions arise with respect to 
discovery learning environments. Which of the potential explorations should be 
provided, and which computerized tools are needed to support these explora- 
tions? How should the explorations be sequenced to facilitate learning and trans- 
fer of training? 

For the last few years, my colleagues (David Woods and Emily Roth) and I 
have been investigating issues in the design of decision support for complex and 
dynamic domains. We have chosen a representative domain (process control) 
and a representative task (me manual,control of feedwater) for our investigations. 
We believe that on-line diagnosis, graphic displays, and discovery learning are 
three mutually reinforcing techniques that can be used to improve the effective- 
ness of training. We also believe that a detailed understanding of both the cog- 
nitiv demands that are produced by the domain and the cognitive resources that 
ski$ Â¡ omain practitioners have developed to meet these demands is required for / 

these techniques to be used appropriately. Two instructional systems have been 
developed that illustrate the approach. The first system is a part-task simulation 
that replicates the fundamental aspects that make the manual control of feedwater 
difficult. The second system is an on-line advisor that is incorporated within a 
full-scope simulator. These two systems, their development, and the design 
rationale are discussed. 

THE MANUAL CONTROL OF FEEDWATER TASK 
AND THE PART-TASK SIMULATION 

Any successful attempttp'provide automated instruction needs to be based on 
cognitive analyses of 6h9o th  the domain and expert performance within that 
domain. Providing this information is precisely the concern of a nascent disci- 
pline that has been referred to as "cognitive engineering" (Hollnagel & Woods, 
1983; Norman, 1986; Rasmussen, 1986; Woods & Roth, 1988). Cognitive en- 
gineering provides a framework for the development of both on-line (real-time) 
and off-line (training) decision support. The approach can be paraphrased in the 
following manner. First, the "cognitive demands" that the underlying system 
places on the user must be determined. Then the user's "cognitive resources" 
(information processing capabilities, skills, knowledge, and higher-level strat- 
egies) that are available to meet these demands must be determined. Two mutu- 
ally reinforcing, cognitive-based analyses were conducted to provide this infor- 
mation for the manual control of feedwater task (Roth & Woods, 1988; Woods & 
Roth, 1988). The goalslmeans analysis determined those aspects of a domain . 
that make successful performance at the task difficult to achieve. The cognitive 
task analysis provided a description of the knowledge and skills that individuals 
had developed to overcome those difficulties. 

Goals/Means Analysis 

An analysis of the domain is crucial because the domain is the ultimate source of 
the cognitive demands that will be placed on an individual. As its name implies, 
the goalslmeans analysis provides a description of the domain in terms of goals 
that need to be accomplished and the physical resources that are available to 
accomplish them. Before discussing the details, a general description of the 
manual control of feedwater task is in order. The manual control of feedwater 
task (MCF task) is a critical and difficult task that can result in high economic 
losses when performance is poor. In a study of reactor trip data derived from 
plant monthly operation data over a 6-year period (1978- 1983). it was found that 
the predominant cause of reactor trips was the manual control of feedwater task 
(INPO, 1984). This task was responsible for an average of 1.3 trips per plant, per 
year, and with certain plant configurations this estimate could be as high as five 
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FIG. 5.1. The animated mimic display. 

trips per plant per year. The task itself is embedded in the overall startup of a 
nuclear power plant and will be explained with reference to Fig. 9.1. During 
startup the energy produced by the nuclear reactor (in the form of heat) is piped 
through several boilers or steam generators (only one is pictured) to produce 
steam. This steam then drives a turbine to produce electricity and is subsequently 
cooled and returned to the steam generators in the form of feedwater. Controlling 
the rate at which feedwater returns to the steam generator is the manual control of 
feedwater task. In addition to the operator who performs this task, there are two 
more operators who control steam demand and reactor power. The critical perfor- 
mance variable is maintaining the level of water in the steam generators (the 
indicated steam generator level, ISGL) between an upper trip setpoint and a 
lower trip setpoint: crossing a setpoint autoi~'.'-!ically shuts the plant down and the 
startup must begin anew. 

A goalslmeans analysis of the manual control of feedwater revealed that to 
accomplish the startup task two conflicting high-level goals must be achieved: 
(a) maintaining a mass balance by matching the amount of mass entering (feed- 
water flow) and leaving (steam flow) the steam generator, and (b) maintaining an 
energy balance by matching steam demand with reactor power production. As an 
example of how these goals can produce conflicts, consider the following sce- 

nario. Imagine that the ISGL is close to the lower setpoint boundary, and that, 
therefore, a high-priority goal is to raise this level to avoid a plant trip. One of the 
means available to accomplish this goal is to increase the rate of feedwater flow 
until the mass flowing into the steam generator is greater than the mass leaving it 
(steam flow). As one might expect, under these conditions the ISGL will ulti- 
mately rise. However, the increase of cold feedwater (relative to the environment 
inside the steam generator) initially decreases the thermal energy, causing the 
ISGL to fall (a "shrink" effect), and exacerbates the initial problem. This is one 
example of how energy effects can cause the initial change in ISGL to be the 
opposite of the long-term, steady-state effect and how ISGL reflects the true 
steam generator mass only after a time delay. The highly negative impact of even 
minimal time delays in tracking tasks is well documented (e.g., Wickens, 1986). 
Thus, the counterintuitive and time-delayed behavior of the ISGL is one funda- 
mental source of difficulty in performing the task. 

The goalslmeans analysis also revealed several other factors that contribute to 
the difficulty of the task. Each of the primary variables controlled by individual 
operators (steam flow, feedwater flow, reactor power) has an impact on the 
critical performance variable (indicated steam generator level). This high degree 
of intercoupling demands a significant amount of communication and coopera- 
tion between the three operators. In addition, the operators lack information 
about the critical primary variables: reliable estimates of steam flow and feed- 
water flow are not available at low power levels (where the startup task occurs) 
because plant sensors can only detect large volume flows. Finally, from two to 
four steam generators must be simultaneously controlled, adding a significant 
time-sharing component to the task. 

Cognitive Task Analysis 

Although the MCF task is quite diflicult, expert operators have developed the 
knowledge and skills that allow them to accomplish the task. A cognitive task 
analysis was performed to determine the nature of those skills and knowledge. 
The cognitive task analysis defines the user's role within the goallmeans hier- 
archy. That is, it determines the decisions andlor actions that the user must 
perform, and the data or information that is necessary to make those decisions or 
actions. Expert operators from nine separate utilities attended a 3-day panel 
session. The operators were asked to describe the major feedwater control ma- 
neuvers (with emphasis on what made these maneuvers particularly difficult) and 
incidents or near-incidents that they had been involved in or were familiar with, 
and they were also observed on a full-scope training simulator while actually 
performing the task. 

The results of the cognitive task analysis indicated that expert operators had a 
detailed and rich understanding of the system that they were controlling. One 
facet of this understanding was the ability to recognize system state, involving 
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the primary task of determining the extent to which current 1SGL was due to 
long-term mass balances or transient energy effects. To accomplish this expert 
operators were observed :o "mentally track" the influences that would 
eventually have an effect on 1SGL, but that had not appeared yet due to the 
significant time delays. When expert operators lost track of these influences they 
were observed to perform "experiments"-entering small control inputs to ob- 
serve the influence on ISGL. The cognitive task analysis revealed that a second 
facet of their detailed understanding of the system was the ability to predict ISGL 
response to control inputs. When mismatches between system goals and current 
system state (e.g., maintain the 1SGL away from setpoints or maintain ISGL at a 
level that prepares for upcoming maneuvers) occur, then control input must be 
made. Expert operators were able to mentally simulate the system dynamics and 
choose between alternative control inputs that were most likely to achieve these 
goals. 

In addition, expert operators exhibited specific control strategies that allowed 
them to avoid or to recover from problematic situations. One strategy to avoid 
trouble was to make small control inputs, thereby circumventing large oscilla- 
tions in 1SGL. Strategies to recover from trouble involved not only understand- 
ing the complex system dynamics, but actually using them to their advantage. 
Expert operators coordinated changes in the primary variables to produce ar- 
tificial energy effects (referred to as shrink and swell levers) that would allow the 
required control inputs for recovery to be made. To recover from the scenario that 
was described earlier the feedwater operator might ask the turbine operator to 
increase steam demand, which would then cause a temporary increase in the 
ISGL (a swell effect), allowing the rate of feedwater to be increased without 
exceeding the lower setpoint boundary. Perhaps the most defining characteristic 
of an expert operator was the ability to quickly translate knowledge into action: 
expert operators were able to recognize a situation, select an appropriate strategy, 
and execute that strategy in an "automatic" fashion. 

Part-Task Trainer 

The findings of these two cognitive analyses guided the development of a part- 
task simulator for the manual control of feedwater task. A control theory expert 
familiar with nuclear power plants replicated the behavioral dynamics of a single 
steam generator with high functional fidelity. A set of differential equations were 
developed to reflect the influence of a number of factors on the ISGL, including 
steam flow, feedwater flow, and temperature of the feedwater. The simulation is 
generic in that the relative effects of these variables can be adjusted to represent a 
wide range of existing steam generators. Thus, the part-task trainer was designed 
to replicate the critical aspects of the task, as identified in the cognitive analyses 
described earlier. A significant amount of effort was devoted to developing 
additional decision support to replicate some of the critical skills and knowledge 
of expert operators. 

Estimates of Steam and Feedwater Flows. The goalslmeans analysis and the 
cognitive task analysis revealed that one major contributor to the difficulty of the 
task is the lack of information regarding steam and feedwater flows. This infor- 
mation is critical because the relationship between these two variables deter- 
mines mass balance. The mass flowing out of the steam generator (steam flow) 
must be replaced by mass flowing into the steam generator (feedwater flow) to 
maintain ISGL at a constant level. Although this information is not available in 
the actual plants, it can be obtained from the mathematical simulation and pro- 
vided to individuals so that they can develop a deeper appreciation of the impor- 
tant relationship between them. 

Compensated Steam Generator Level. The goalslmeans analysis revealed 
that two additional contributors to the difficulty of the MCF task are the long time 
delays between a control input and its effect on 1SGL and the counterintuitive 
energy effects (shrink and swell). A prominent characteristic of expert perfor- 
mance was the ability to estimate the extent to which the current ISGL level was 
a result of these time delays and energy effects. A "compensated" steam gener- 
ator level (CSGL) variable was developed that provides an estimate of the critical 
performance variable, indicated steam generator level. The CSGL variable elimi- 
nates the time lags and counterintuitive behaviors (shrink and swell effects) that 
are characteristic of the ISGL. When mass contributions are balanced (that is, 
when steam and feed flow are equal) the CSGL estimates the steady-state condi- 
tion that ISGL will approach, and provides a direct indication of the size and 
direction of energy effects (shrink and swell). 

Predicted Steam Generator Level. The cognitive task analysis also revealed 
that an important aspect of operators expertise was the ability to predict the 
behavior of 1SGL. For instance, increasing the rate of feedwater flow could result 
in a shrink effect that would cause ISGL to cross the lower setpoint boundary. 
Normally the operators are required to mentally estimate the future behavior of 
the 1SGL based on the current system context and their knowledge of the system 
dynamics. To assist the operators in this task, a predictor variable was developed 
that projects the value of 1SGL into the future. 

Summary 

Developing effective automated instruction requires a detailed understanding of 
the target domain as well as the skills and knowledge that experts have developed 
to enable them to perform successfully within that domain. Cognitive engineer- 
ing provides principles and techniques that can be used to discover this informa- 
tion. The analyses that were performed for the manual control of feedwater task 
provide one example of how the required information might be obtained 
(Mitchell & Saisi, 1987, describe a similar approach in the design of NASA 
ground control centers). The goalslmeans analysis determines the system goals 
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that need to be accomplished, the physical resources (means) that are available to 
meet those goals, and the resulting cognitive demands that are placed on indi- 
viduals performing tasks in ;he domain. The cognitive task analysis identifies the 
skills and knowledge (the cognitive resources) that individuals have developed to 
meet those demands. The ultimate goal is to identify instances where the cog- 
nitive demands of the domain of application and the cognitive resources of the 
user are mismatched. When the goal is to develop on-line decision support, these 
mismatches signal the need to reconfigure the existing interface (collecting or re- 
representing existing information) or the development of additional information 
to be added to the interface. When changes to the existing interface are not 
possible, cognitive demandlresource mismatches signal critical skills and knowl- 
edge that must be fostered by the instructional system. Having determined the 
critical information that is necessary for successful performance of the MCF task 
(variables, relationships between variables, goals and constraints), and having 
developed additional &c%ion support to aid successful performance (estimates 
of steam and feed flows, the compensated SUL, the predicted SGL), the question 
becomes how to represent this information in the interface. 

REPRESENTATION AIDING 

One form of decision support that is often overlooked is representation aiding 
(Woods, 1991; Woods & Roth, 1988; Zachary, 1986) where machine power is 
used to create and manipulate graphic representations of the domain. Woods 
(Woods & Roth, 1988) and Rasmussen (1986) have stressed that there can be no 
neutral representation: any representation that is chosen will necessarily empha- 
size certain aspects of the domain at the expense of others. When designed 
appropriately, representation aids can be used to help the human problem solver 
find the relevant data in a dynamic environment, to visualize the semantics of the 
domain, and to restructure their view of the problem. This will be especially 
important during training and instruction, since an individual is explicitly learn- 
ing about the domain. While technological developments have provided power- 
ful capabilities to generate computer graphics, a clear understanding of how 
these capabilities can be used to support human cognition is needed. 

There are several theoretical perspectives that can be used to guide the devel- 
opment of representation aids. Cleveland and his colleagues (Cleveland, 1985; 
Cleveland & McGiil, 1985) have investigated the visual system's effectiveness in 
extracting information that has been mapped into various graphical forms (e.g., 
area of a circle vs. length of a line, etc.). wickens and his colleagues (Wickens, 
1986; Wickens &.Andre, 1990; Wickens et al., 1985) have investigated the 
relationship between the general information-processing capabilities of an indi- 
vidual, the general demands of the task, and the implications for display design. 
Hutchins, Hollan, and Norman (1986) describe a general theory of interface 

design that emphasizes the role of direct manipulation (the capability to effect 
changes in the domain by directly acting upon objects of interest). 

A number of researchers have been investigating an alternative approach to 
display design for complex, dynamic domains. Although their theoretical orien- 
tations are slightly different, and the specific conclusions and recommendations 
may differ they all share very similar basic beliefs. For these researchers, the 
success of a representation aid depends upon matching specific perceptual and 
cognitive capabilities of an individual with specific characteristics of the domain . 
(Bennett, Toms, & Woods, in press); Flach & Vicente, 1989; Rasmussen, 1986; 
Vicente & Rasmussen, 1990; Woods & Roth, 1988). In particular, the semantics 
of those domains (the critical variables, the relationships between these vari- 
ables, and the relevant goals and constraints) must be mapped into the static 
appearance and dynamic behavior of the representation aid so that critical infor- 
mation can be easily extracted or decoded by the individual. 

The principles that these researchers use to guide the design of representation 
aids for skilled performance are applicable to those for the acquisition of cog- 
nitive skills. However, the design of representation aids for automated instruc- 
tion places additional requirements for integrated sets of displays. Representation 
aids also need to be designed to facilitate the transition from an initial under- 
standing of the domain semantics to a more advanced conceptualization that 
approximates that of expert domain practitioners. In addition, when the graphic 
displays in the training system are not available on the target system, sets of 
representation aids need to be designed that facilitate the transfer of training to 
the target system. A set of representation aids that were developed for the part- 
task trainer is described in greater detail. 

Trend Displays 

In existing power plants, an operator performs the MCF task with a strip chart 
that provides the value of indicated steam generator level over time. Figure 9.2 
illustrates two "trend" displays that were developed for the part-task stimulus. 
The upper trend display in Fig. 9.2 contains the critical performance variable 
ISGL and the CSGL. The current values of these variables are represented by 
diamonds in the right-hand portion of the screen; the history of these variables 
across a 5-min time frame is represented in the left hand portion of the screen. 
The lower trend display in Fig. 9.2 portrays the primary variables that effect 
1SGL level (steam flow, feed flow, and reactor power). 

This representation of the domain semantics facilitates performance of the 
MCF task in several ways. The cognitive task analysis indicates that an important 
aspect of performing the MCF task is maintaining an internal record (over time) 
of the variables that influence ISGL. This is precisely the information conveyed 
by the trend displays. Variables that are normally available (the ISGL and power 
level) and some that are not normally available (steam flow, feed flow, CSGL, 



228 BENNETT 9. REPRESENTATION AIDING 229 

(the reactor core, the steam generator, and the turbine housing) and the pipes that 
connect them are represented graphically. The flow of steam (from steam gener- 
ator to the turbine), feedwa:er (from turbine to steam generator), and energy -. 
(from reactor core to steamlgenerator) is represented by animating the pipes. 
Apparent motion d s  produced by systematically changing (cycling) the 
luminance and chromaticity of adjacent squares inside the pipe. 

Despite the intuitive appeal, very little empirical research has addressed issues 
associated with the implementation of this type of display. Basic research on the 
perception of motion indicates that the perceptual characteristics of the graphical 
elements (the squares) wiii have an impact on how well the apparent motion 
produced by the display matches the flow rates in the domain. These perceptual 
characteristics include fundamental frequency, temporal frequency, contrast 
(chromatic or luminance), shape, and borders. A series of empirical investiga- 
tions have been conducted: the perceptual characteristics between the graphical 
elements were altered and observers matched the apparent motion of two hori-. 
zontal, parallel pipes. The results of one set of experiments indicate that although 
chromatic contrast could be used to perform the rate-matching task, luminance 
contrast was much more effective. A second set of experiments revealed that 
there were optimal combinations of fundamental frequency (the size of the 
squares) and temporal frequency (the rate at which the squares were cycled). In a 
third set of experiments the nature of the borders between graphical elements was 
altered: the borders could be explicit (lines drawn between them) or implicit (no 
lines, just the contrast between elements) and the borders could remain vertical 
and fixed (no contours), or increasingly contoured (arrow-shaped) as rates of 
flow increased. It was found that explicit borders decreased rate-matching perfor- 
mance when no contours, were present, but facilitated performance when the 
contours became more arrow-shaped. Additional details can be found in Bennett 
(1991a. 1991b). . 

The Configural Display 

The animated mimic is an example of one type of display that has the potential to 
explain the physical functioning of complex causal systems. However, as 
Rasmussen (1986) has indicated, to accomplish tasks in complex domains the 
operator must understand the system at higher levels of abstraction, including 
system functions that cut across individual components or subsystems. Figure 
9.3 illustrates a graphic display that has been developed to explicitly represent a 
higher-order, functional perspective of the MCF task. This representation corre- 
sponds to Rasmussen's fourth level in the hierarchy, the level of abstract func- 
tion. 

This type of display is referred to as a configural display. This display maps 
four variables (feedwater flow, steam flow, indicated steam generator level, and 
compensated steam generator level) into a single graphical object: a rectangle. 
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FIG. 9.3. The configural dis- 
play. 

The difference between steam and feedwater flow is mapped in the x axis (there- 
fore, the width of the rectangle represents the degree to which mass input and 
output is balanced). The difference between the indicated and compensated steam 
generator level is mapped in the y axis (thus, the height of the rectangle roughly 
corresponds to the energy balance). The resulting display is a rectangle that 
changes in size and shape, as well as location inside the display grid. These 
changing perceptual cues provide direct information about the state of the plant. 
For example, a rectangle with a large area represents large imbalances in mass 
and energy and, therefore, an unstable and generally undesirable plant condition. 
This type of perceptual cue has been referred to as "emergent perceptual fea- 
tures" (Pomerantz. sager, & Stoever, 1977; Sanderson, Flach, Buttigieg, & 1 

"\ '4 Casey, 1989) and 4mnp^y does not exist with the display of the same information-. d ~ d L  
L ---------- 

in a separable format (e.g., four bargr- 
The success of a configural display in improving performance depends upon 

the extent to which the emergent perceptual features that result from the interac- 
tion of the lower-level graphic elements correspond to the demands of the task. 
When there is a direct correspondence, configural displays have been shown to 
facilitate performance (relative to separable displays) when information from 
several variables nwst be integrated to reach a decision (Wickens, 1986; Wick- 
ens & Andre, 1990; Wickens et al., 1985). The results of an empirical investiga- 
tion that compared performance with the configural display in Fig. 9.3 to perfor- 
mance with a separable display of information (four bargraphs) support this 
conclusion (Bennett et al., in press). It was found that the configural display 
facilitated the accuracy (and in some conditions the latency) of responses that 
required the recall of critical task information: the mass and energy balances. 
Thus, the configural display provides a high-level conceptual perspective of the 
MCF task that emphasizes the functional, rather than the physical, aspects of the 
task that are critical for successful performance. 

However, there is a potential cost associated with configural displays. Some 
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Â¥ research has indicated that displaying inforn~ati n in a configural format can 
decrease the availability of inforxiaiion d o  individual variables. Thus, a 
critical issue in the design of configural displays is how to prevent this cost. 
Bennett et al. (in press) found that color-coding the lower-level, configural 
elements of the display partially offset these costs. Bennett and Flach (1991) 
review issues in the design of configural displays, including methodologies, 
associated patterns of experimental results, and relevant theories of design. They 
conclude that designing configural displays to allow the extraction of information 
related to both high-level properties and low-level data is a very distinct pos- 
sibility. 

Summary 

Representation aiding has a vast potential to improve overall system performance 
in human-machine systems, due to both our impressive capabilities to process 
and utilize spatial information and the abundance of hardware and software to 
produce computer-generated graphics. Graphic displays can collect and integrate 
information, provide alternative conceptual perspectives, make the abstract con- 
crete, and in some cases transform problem solving from a process that requires 
limited cognitive resources to one that capitalizes on virtually limitless perceptual 
resources. This section has outlined one design perspective that can be used to 
capitalize on this vast potential. One of ihe key conceptualizations is that the 
effectiveness of representation aiding depends on the mapping of information 
from the domain into the perceptual characteristics of the display. To the extent 
that the relevant information can be easily extracted from the representation, it 
will be effective. 

The displays and decision support that have been developed for the part-task 
trainer were developed from this perspective. These displays should facilitate the 
acquisition of skills and knowledge required to complete the MCF task. The 
steam and feed flow variables and the compensated ISGL variable replicate a 
large portion of the expertise that expert domain practitioners exhibit. For exam- 
ple, these displays separate the effects of mass and energy balances on the critical 
performance variable ISGL and eliminate the long time delays associated with 
control input. Interacting with these displays should facilitate the development of 
skills such as determining system state, predicting future state, and anticipating 
necessary actions. Also, by eliminating the need to maintain an internal record of 
influences on ISGL, the demands on short-term memory are reduced, which 
allows an individual .to concentrate on higher-level aspects of the control task 
such as control strategies to avoid or recover from trouble. 

The trend displays, animated mimic, and configural display provide multiple 
conceptual perspectives of the domain semantics that pave the way for necessary 
transitions in knowledge. The animated mimic provides a very concrete, physical 
perspective of the system components and the causal relationships between them. 

This display should be particularly appropriate for the development of an appro- 
priate mental model of the MCF task and provide a basis for causal reasoning. 
On the other hand, the configural display providesa representation that is a 
higher-level abstraction of the functional relationships between the primary vari- 
ables (mass and energy balances). This representation corresponds to one con- 
ceptualization that a more experienced operator may have developed after con- 
siderable experience at the task. Thus, these displays provide a framework for the 
transition from novice to expert conceptualizations of the task. In addition, the 
trend displays provide a conceptual perspective that matches the perspective in 
the target system and thus provides a means to transition the individuals from the 
additional decision support that is available on the part-task trainer that is cur- 
rently available in the actual domain. 

DISCOVERY LEARNING 

One of the fundamental issues in automated instruction is the degree of learner 
versus system control of the instructional sequence (Glaser, 1990; Glaser & 
Bassok, 1989). One approach to automated instruction is to design systems that 
provide the learner with the opportunity to actively explore a domain. In this type 
of system a student is provided with tools that assist in the formation and testing 
of hypotheses about that domain (e.g., Shute & Glaser, 1990). This approach to 
instruction is based upon the belief that active participation in the learning 
process will improve the effectiveness of learning. 

One of the primaryresources that we have to support the discovery learning 
approach to instruction is representation aiding. As previous discussion has 
indicated, alternative conceptual perspectives and information that is not nor- 
mally available can be provided to facilitate understanding and comprehension of 
complex domains. The discussion emphasized the importance of direct percep- 
tion, that is, the representation of the domain semantics in a visual form that 
highlights the critical information necessary to acconlplish domain tasks. How- 
ever, as Holland and his colleagues (Hollan et al., 1984; Hutchins et al., 1986) 
have emphasized, direct manipulation can also be an important element of dis- 
covery learning approaches. Variables can be directly manipulated on the screen, 
and the resulting effects can provide immediate visual feedback to facilitate 
understanding. 

Several lines of research support the potential of the discovery approach to 
facilitate learning. For example, Bobrow and Bower (1969) found that asking 
individuals to generate answers facilitated recall of sentences. Roth, Bennett, 
and Woods ( 1987) investigated the effectiveness of performance with an expert 
system that was designed to replace training on the troubleshooting of an elec- 
tronic device. It was found that troubleshooting performance was best when 
technicians actively participated in troubleshooting activities, in direct contrast to 
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the unsuccessful performance that resulted when technicians passively followed 
the instructions that were given by the system. 

Lesh (1987) directly compared discovery and traditional learning approaches 
for the acquisition of mathematical skills. In subsequent tests, students experi- 
encing the discovery learning approach performed better than those experiencing 
the traditional approach. In addition, individuals in the discovery learning condi- 
tion were more likely to understand domain principles that were not directly 
addressed during instruction. It appears that actively exploring and experiencing 
concepts in the domain can result in increased structure and interconnections of 
knowledge in memory. The principles of discovery learning may provide one 
solution to the problem of inert knowledge (Bransford, Sherwood, Vye, & 
Rieser, 1986). 

The combination of a discovery learning approach and graphic representations 
providing direct perception and manipulation have a great potential to improve 
automated instructional systems for complex, dynamic domains. Three key is- 
sues in the development of a discovery environment are (a) the nature of the 
explorations that are provided, (b) the nature of the tools and representations that 
are provided to support these explorations, and (c) the ordering or sequencing of 
these explorations. The goal of a discovery learning environment is to provide an 
individual with the capability to explore the complete range of the situations that 
might be encountered in a domain and the alternative behavioral responses that 
are available. A number of potential explorations that might be useful for the 
MCF task and other complex, dynamic domains will be discussed. 

Change System Variables to Perform Experiments. This exploration is really 
at the heart of the discovery learning approach. In Smithtown (Shute & Glaser, 
1990), individuals manipulate variables to perform experiments and their actions 
are monitored to see whether they adhere to the scientific method. One issue in 
this type of exploration concerns which variables should be manipulable. In the 
MCF task, individuals should be allowed to change any of the primary variables 
(steam flow, feed flow, and reactor power) or other variables (e.g., the tem- 
perature of the feedwater can vary, and this has a significant influence on the size 
of the shrink and swell effects that occur) that effect the ISGL. However, since 
ISGL is the critical performance variable that they must learn to control, and 
since ISGL is influenced by a number of variables, individuals should not be 
allowed to manipulate it. 

Change System Display$. One important exploration is the capability to add 
or subtract additional decisional support, and to alternate between various con- 
ceptual perspectives. For example, interacting with the additional decision sup- 
port and alternative conceptual perspectives is likely to facilitate the acquisition 
of skill at the MCF task. However, because this information will not be available 
during performance of the actual task, an individual needs the capability to add 
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v or subtract this additional support. In this manner, individua can learn to per- 
form the task with the additional decision support and then gradually "wean" 
themselves until they can perform the task with the information and conceptual 
perspective that is available in the real world. 

C h q e  Scenarios. In complex, dynamic domains one of the most important 
explorations that an individual should have is the ability to explore the range of 
situations that might be encountered. The scenarios should be carefully chosen to 
present situations that require all categories of the skills and knowledge that are 
necessary for successful performance in the domain, and ideally, instances within 
these categories that vary in their degree of difficulty. In the case of the MCF 
task, this might include standard scenarios with a low degree of difficulty, sce- 
narios with existing trouble that requires the use of specific strategies to recover 
from trouble, scenarios with impending difficulty where strategies to avoid trou- 
ble are required, scenarios where other team members are working at cross 
purposes, and scenarios where critical aspects are varied (e.g., the temperature of 
the feedwater is varied to produce larger or smaller shrinklswell effects). 

Repeat or Rewind a Particular Scenario. When learning to control a com- 
plex process, a learner will benefit from the opportunity to control the process 
again under the exact same circumstances. For instance, an individual who lost 
control and crossed a setpoint boundary in the MCF task should be able to 
immediately "rewind" the scenario and attempt an alternative strategy. Another 
version of this exploration is to attempt the same scenario with different decision 
support (e.g., successful completion of a scenario with the CSGL, followed by 
another attempt with ISGL alone). 

Change Role. In complex, dynamic domains teams of individuals must 
often work together to achieve common goals. This requires an understanding of 
each team member's role in achieving overall goals. For example, the manual 
control of feedwater operator often coordinates the actions of the other two 
operators during the execution of strategies to avoid or recover from trouble 
(e.g., artificial shrink and swell effects). Thus, an important exploration might be 
the ability to perform complex tasks while assuming each team member's role. 

Step Through or Speed Up Simulation. In complex, dynamic domains there 
are often multiple events occurring simultaneously, with the end result that an 
individual may not be able to attend to all events simultaneously. Allowing an 
individual to slow dowi^tkFate^irwtrrdrthe-snnatatioi^updatest^&an exploration- -- 
that would this to happen. The converse of this exploration is time compression, 
which is the acceleration of the simulation update rate. In cases where there are 
significant time delays between a control input and the system's response, reduc- 
ing the update rate can facilitate the acquisition of skill (e.g., Vidulich, Yeh, & 
Schneider, 1983). 



234 BENNETT 9. REPRESENTATION AIDING 235 

Predict System Dynamics. In complex, dynamic domains, particularly those 
involving causal systems, one important exploration is to allow an individual to 
predict the behavior of the system or device (e.g., in the MCF task the critical 
prediction is the behavior of the 1SGL). One exploration that might be provided is 
to allow an individual to make a prediction about the future behavior of the 
domain and then be provided with feedback regarding the appropriateness of the 
prediction. 

Summary 

This section has outlined the rationale behind a discovery learning approach to 
automated instruction, as well as a number of explorations that might incorporat- 
ed into this type of system. The explorations should provide an indivi 5l--- ual with 
the opportunity to experience the range of situations that might be encountered in 
the domain as well as alternative response strategies that are available. Questions 
concerning how these explorations should be sequenced are closely related to 
fundamental issues in instructional theory. The strong view of discovery learning 
requires that an individual be allowed total freedom in the sequencing of explora- 
tions. However, there is some evidence that students low in ability or motivation 
may require explicit coaching to (ake advantage of this type of learning environ- 
ment. In addition, there is no guarantee that students will explore all of the 
domain problem space. At the other end of the instruction spectrum is what has 
been referred to as the "mastery" approac!. (Claser, 1990). where an individual 
has very little discretion over the sequencing of instructional treatments. 

It is likely that an approach located between these two extremes will prove to 
be the most effective strategy for discovery learning. This has been referred to as 
a "guided discovery" approach. For example, Shute and Glaser (1990) allow 
students freedom in their choice of explorations until it is clear that they are not 
making progress toward instructional goals, at which point more directed instruc- 
tion is provided. This approach could be extended by allowing an individual 
freedom within progressive levels of instruction (e.g., an individual might not be 
provided the opportunity to explore the utility of shrink and swell leverage 
strategies until success at standard control is demonstrated). Some of the se- 
quencing decisions can be guided by the results of the goalslmeans analysis, the 
cognitive task analysis, or even intuition. However, a theory of learning that is 
adequately detailed to provide guidelines for the sequencing of explorations is 
needed. 

COGNITIVE DIAGNOSIS FOR AUTOMATED 
INSTRUCTION 

The discussion of how explorations should be sequenced serves as an introduc- 
tion to the role of guidance in automated instructional svstems. The a ~ ~ r ~ d c h  to 

instruction that has been discussed to this point emphasizes the role of direct 
perception, direct manipulation, and discovery learning. When coupled with a 
simulation of the domain this can provide an effective environment for the 
acquisition of skills and knowledge for complex, dynamic domains (Hollan, 
Hutchins, & Weitzman, 1984). However, as Anderson (1988) indicates, this is 
only pan of the expertise that an automated instructional system should provide. 
An automated instructional system should also guide a student through the ac- 
quisition of domain skills, including the provision of advice or instruction in 
particularly difficult or novel situations, and the adaptation of the instructional 
sequence based on the student's current level of competency. What are the 
mechanisms behind the provision of this advice and what form (verbal, graphic) 
or "grain" (specific or general) should the advice take? 

Sophisticated diagnostic and student modeling techniques have evolved to 
provide guidance in well-constrained domains (Anderson, 1988; VanLehn, 
1988). Implementing these advanced techniques requires highly accurate psycho- 
logical models (e.g., cognitive modeling; Anderson, 1988). With rare excep- 
tions, these techniques have not been incorporated into instructional systems for 
complex, dynamic domains. In part, this is due to the complexity of the skills and 
knowledge that are required. Individuals must have detailed declarative knowl- 
edge about low-level, physical components of the domain and how they combine 
to provide higher-level functions of the domain. Individuals must be able to 
causally reason about the flow of information or resources between components 
and functions. They must also develop appropriate response strategies to avoid or 
recover from trouble, contextual knowledge about when these strategies apply, 
lower-level psychomotbr skills to execute these strategies, and monitoring skills 
for the assessment of progress towards goals. Developing the highly accurate and 
detailed psychological models of performance that are required to implement 
more sophisticated diagnosis and modeling techniques would require a tremen- 
dous amount of effort (e.g., see Anderson, 1988, and VanLehn, 1988, for discus- 
sions concerning the difficulty of, and prospects for, developing diagnostic and 
modeling techniques for causal reasoning). 

An additional aspect of complex domains that would appear to complicate the 
process of providing guidance is their dynamic nature. Scenarios develop over 
time, and new events can occur at indeterminate times, thus changing the nature 
of the problem to be solved. Therefore, the instructional system has the addi- 
tional burden of assessing the evolving problem solving context to evaluate 
student actions. However, situation assessment can actually serve as a basis for 
the provision of instruction. Perhaps the best illustration is the work of Suchman 
(1987), who emphasizes the importance of "situated action" as the basis of 
instruction that is tailored for a particular instance and a particular individual. 
Combining situation assessment with simpler diagnostic techniques is one poten- 
tial solution to the problem of providing automated instructional environments 
for complex, dynamic domains. An on-line advisory system was developed for 
the manual control of feedwater task (Roth, Woods, Elm, & Gallagher, 1987) 
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that utilized situation assessment as one basis for the provision of on-line guid- 
ance. 

On-Live Advisory System 

The on-line advisory system was implemented on a full-scope simulation of a 
power plant and offers advice that is based on an analysis of expert performance 
at the MCF task. The design emphasis was to replicate the "cognitive competen- 
cies" that expert operators displayed. A portion of this cognitive competency 
(recognition of system state, the anticipation of future responses, and the separa- 
tion of mass and energy effects on the 1SGL) was provided by the decision 
support that was discussed earlier. In addition to this information, the on-line 
advisor provided advice with respect to the acceptable operating ranges for 
primary variables and also specific strategies for avoiding and recovering from 
trouble. 

Advice on Acceptable Operating Ranges for Primary Variables. The find- 
ings of a cognitive task analysis of the MCF task indicated that expert operators 
maintained primary variables in a "comfort zone" that minimized the risk of 
crossing a setpoint boundary. The on-line advisor provides an estimate of the 
acceptable ranges for the primary variables (steam flow, feed flow, reactor 
power). One unique feature of this advice is that it is provided graphically, in the 
form of vertical bars (or operating bands) that are placed adjacent to the current 
values of the variables. "Tkse graphic operating bands change as a function of 
the current state of the system: when the plant is stable there is a wide range of 
acceptable values; when ;he plant is unstable a very narrow range of acceptable 
values would be provided. 

Advice on Specific Strategies. The system also offers advice on specific 
strategies to avoid or recover from trouble. This advice takes the form of action 
scripts that describe the system state, the desired outcome (goal), and general 
recommendations for control input. The provision of this advice is triggered by 
an assessment of both current and future system state. The advice that is provided 
is based on taxonomies of specific plant situations and specific response strat- 
egies of operators (obtained from the cogniiive task analysis). For example, 
consider an instance where the ISGL level was dangerously low due to a shrink 
effect and increasing the feedwater flow would result in crossing the lower 
setpoint boundary. The on-line advisor recognizes the situation from an assess- 
ment of both the current state of the system (ISGL and CSGL variables) and the 
future state of the system (the ISGL predictor). A response strategy that expert 
operators were observed to exhibit in this situation is then provided. Initially, an 
alphanumeric warning appears in an alarm window informing the operator of the 
adverse plant state ("shrink in progress"), and as the situation worsens the alarm 

window would direct the operator to consider the advice presented in an action 
script window. In this example the advice is to create an artificial swell (the goal, 
"create swell," and the recommended control input, "increase steam flow") and 
then adjust the mass balance (the goal, "establish net inflow," and the recom- 
mended input, "increase feed flow"). 

Common Frame of Reference. One obvious feature of the on-line advisory 
system is that knowledge about the domain is incorporated into a "black-box" 
expert (Anderson, 1988; Burton & Brown, 1979): the expertise consists of com- 
putational algorithms with no attempt to replicate the psychological mechanisms 
involved. The use of a black-box expert avoids the cost and difficulty of detailed 
cognitive modeling, which, as Anderson ( 1988) has emphasized, is formidable 
even in well-constrained domains. One potential disadvantage of using a black- 
box expert in instructional systems is the problem of generating explanations 
acceptable to students. This problem is a particular instance of the more general 
problem of "opaque device" that has been discussed in the context of expert 
systems (Roth, Bennett, & Woods, 1987; Suchman, 1987) and computer systems 
in general (Brown, 1986). 

The on-line advisor partially alleviates this problem by integrating advice and 
the rationale behind it to provide a "common frame of reference" or "mutual 
understanding" (Roth, Bennett, & Woods, 1987; Suchman, 1987). In the on-line 
advisor advice is provided as a function of both current situation assessments 
(ISGL and CSGL) and future situation assessment (the predicted 1SGL). This 
advice is both graphic (recommended operating bands) and alphanumeric (action 
scripts) in nature, and the grain of this advice ihgeneral (high-Jevel~ecornmenda--- - 
tions and not specific actions). In addition, the recommended control input is 
accompanied by a statement of the goal(s) for a particular maneuver. All of this 
information is directly available to the operator in the interface. This common 
frame of reference serves as both an explanation of the advice that is provided 
and a basis for evaluating the effectiveness of that advice. 

Issue-Based Diagnosis 

The major drawback in using situation assessment as the primary basis for 
instructional intervention is that instruction cannot be adapted according to an 
individual's current level of expertise or understanding. One technique that can 
be used to provide this capability is issue-based diagnosis (Burton & Brown, 
1979). Issue-based diagnosis requires an analysis of domain tasks to determine 
'issues" or fundamental skills that are required for successful performance. The 
student's performance is monitored with respect to these issues during the pro- 
cess of solving domain problems. The diagnostic module looks for instances 
where the student has the opportunity to express the skills or knowledge associ- 
ated with an issue, and maintains a record of whether or not this occurs. After 
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sufficient behavioral evidence has accumulated with respect to an issue either 
advancement or instructions! intervention can be provided. To implement the 
issue-based approach, the instructional system must be able to assess the evolv- 
ing problem solving context, and have access to behavioral input within this 
context (what VanLehii, 1988, has referred to as "intermediate state" input). In 
addition, a model of expert performance is required for comparison purposes. 

One positive feature of this approach to on-line cognitive diagnosis is the fact 
that detailed psychological models of all critical skills and knowledge may not be 
required for useful instruction to occur. Burton and Brown (1979, p. 8) state that 
'the black-box Expert used for evaluation need only be augmented with those 
incomplete pieces of an articulate Expert which are needed to detect critical or 
tutorable features of the answers produced by the black-box Expert. The glass- 
box Expert need not be able to produce the complete solution itself. It needs only 
to work backwards from the solution to determine the "important" (tutorial) 
features of the solution. This realization opens up the possibility of constructing 
coaching systems for domains for which we do not have complete glass-box 
expertise." 

Although the development of the on-line advisor did not concentrate on cog- 
nitive diagnosis per se, many of the requirements for the implementation of 
issue-based diagnosis are present. The issues or fundamental skills that are 
necessary for the MCF task were identified in the goallmeans and cognitive task 
analyses. Performance with respect to many of these issues can be assessed with 
direct behavioral measurements. In addition, the student's ability to select and 
execute appropriate control strategies could be measured by comparing the pat- 
terns and timing of their control inputs to those generated by the on-line advisor. 

Summary 

The MCF on-line advisor utilizes black-box expertise, provides advice that is 
based on analyses of expert performance, and uses situation assessment as the 
basis for the provision of this advice. Although this particular system has clear 
limitations, it provides one example of a broad theoretical approach to cognitive 
diagnosis (and instruction in general): guided discovery learning (Burton & 
Brown, 1979). From this theoretical perspective errors and mistakes are viewed 
as an important part of the learning process. For example, Burton and Brown 
(1979, p. 6) state that "While the student is making mistakes in the environment 
he is also experiencing the idea of learning from his mistakes and discovering the 
means to recover from his mistakes. If  the Coach immediately points out the 
student's errors, there is a real danger that t h e  student will never develop 
the necessary skills for examining his own behavior and looking for the causes of 
his own mistakes." There is a fair amount of data that supports the utility of this 
approach. Some of that data was reviewed in the section on guided discovery 
learning (e.g., Lesh, 1987; Shute & Glaser, 1990). The range of applicability for 

issue-based diagnosis is quite large: variations of issue-based diagnosis have 
been used successfully in a wide variety of domains and for a wide variety of 
knowledge (Anderson, 1988; Burton & Brown, 1979; Clancey, 1982). Issue- 
based diagnosis provides one way to cope with the complexity of the skills and 
knowledge that are required for successful performance in complex, dynamic 
domains. Although issue-based diagnosis relaxes the requirement to develop 
complete and highly-accurate psychological models, there is still a need to thor- 
oughly understand the domain and the nature of the skills and knowledge that an 
individual uses to perform successfully in the domain. The cognitive task analy- 
sis and the goalslmeans analysis described earlier are examples of knowledge 
engineering methods that are required to support the approach. 

SUMMARY 

Cognitive diagnosis, student modeling, and other aspects of intelligent tutoring 
make up one way that instructional designers can use the abundant computational 
power that is currently available to improve the effectiveness of automated in- 
struction. A second way to use this computational power is to develop represen- 
tation aiding that allows individuals to envision the characteristics of complex 
domains through the provision of alternative conceptual perspectives (direct 
representation) and an improved capability to interact directly with the domain 
(direct manipulation). A third way to use this computational power is to provide 
aspects of discovery learning: explorations and computerized tools that support 
these explorations. Additional insight about how these three mutually interacting 
and supportive techniques can be used together will improve the effectiveness of 
automated instruction for complex, dynamic domains. 
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