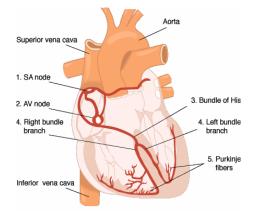


3. The recovery phase that follows depolarization is known as ______.

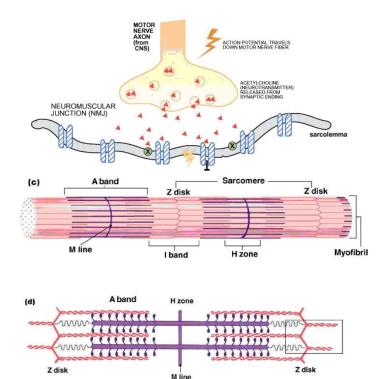
4. The ______ is the ______'s dominant pacemaker and its pacing activity is called a Sinus ______.

5. _____ contraction is recorded as a P wave on the EKG.

6. The AV node is the only electrical conduction pathway between the atria and the ______.


7. Depolarization conducts slowly through the AV node then rapidly through the ____ bundle to the right and left _____ branches.

8. Contraction of the _____ produces the QRS complex on the EKG.


9. The QRS complex is followed by the ST segment which represents the initial phase of ______ repolarization.

10. The _____ wave represents the rapid phase of repolarization.

Fun Fact #1: Fibrillation is caused by rapid discharges from numerous irritable automaticity foci in the atria or ventricles **Fun Fact #2**: A premature ventricular contraction called a PVC originates suddenly in an irritable ventricular automaticity focus and produces a giant QRS complex on an EKG

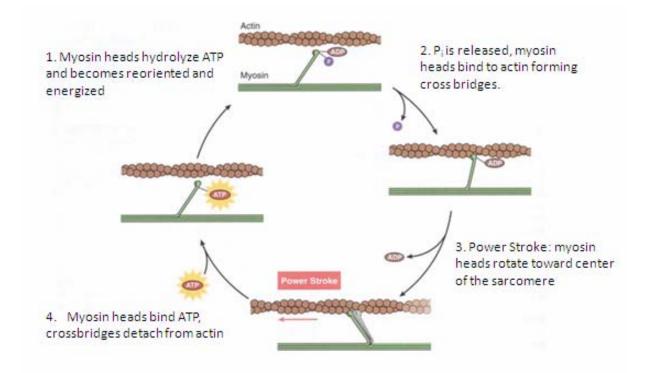
WORD BANK					
Myocytes	Contraction	Ventricles	Repolarization	His	
Т	Atrial	Heart	Electrical	Rhythm	
SA node	Bundle	Ventricular	Ventricles		

The motor neuron terminal contacts muscle fibers at the motor end plate forming the neuromuscular junction

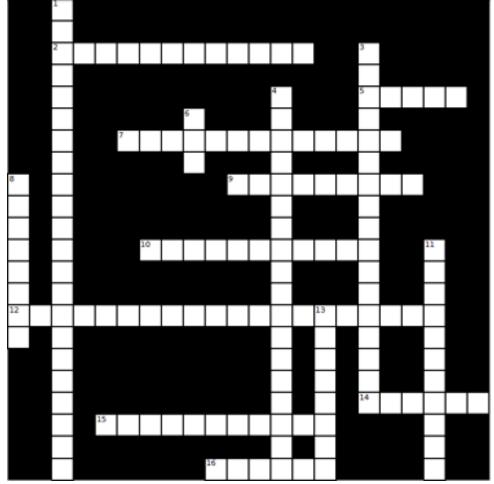
Excitation-Contraction Coupling

1. An action potential is propagated through the motor neuron

2. Voltage-gated Ca²⁺ channels open


3. Vesicles fuse and release of the acetylcholine (ACh) into the synaptic cleft

4. ACh diffuses and binds to its receptor on the muscle membrane


5. Na^+/K^+ channels open, Na^+ enters the muscle causing a depolarizing potential that generates an action potential in the muscle

6. The action potential propagates along the muscle

7. ACh in the synaptic cleft is degraded by acetylcholinesterase (AChE)

	Smooth Muscle	Skeletal Muscle	Cardiac Muscle
Striations	No	Yes	Yes
Nucleus	One central nucleus	Multiple nuclei located peripherally	One central nucleus
Regulation of Contraction	Involuntary	Voluntary	Involuntary
Type of Contraction	Relatively slow, graded	All-or-nothing	All-or-nothing
Type of Innervation	Autonomic efferent	Somatic efferent	Autonomic efferent
Capacity for effective	Considerable	Limited	None
Regeneration			
Response to Increased	Hypertrophy, Hyperplasia	Hypertrophy	Hypertrophy
Demands			

- Across
 Condition which results from lack of ATP generation causing inability of actin and myosin to dissociate
 Each thick myosin filament is surrounded by 6 thin ______filaments
 The ability of muscle tissue to contract forcefully when stimulated by an action potential
 Functional unit of skeletal muscle
 Increased proliferation of cells within an organ or tissue
 Enzyme responsible for degradation of acetylcholine
 The filamentous protein that winds around actin and lies in grooves in its surface, providing strength
 Contraction of skeletal muscle requires ATP which binds to the globular head of this protein

- Down

 1 The specialized form of smooth endoplasmic reticulum in muscle

 3 Autoimmune disease in which autoantibodies attach to acetycholine receptors blocking the ability of acetylcholine to bind

 4 Specialized end to end junctions found in cardiac muscle

 6 Energy molecule which causes dissociation of the myosin head from actin

 8 Movements of the whole body rely on the integrated functioning of bones, joints, and this type of muscle

 11 Increase in the volume of an organ or tissue due to the enlargement of its component cells

 13 Calcium binding to this protein alters the position of tropomyosin, exposing myosin binding site on actin