- 3.1 Notational issues with the displacement (*r*) vector
- 3.2 Rigorous discussion of acceleration along a curved path
- 4 Derivation of Kepler's third law from the inverse square law

Geometrical proof of equation for uniform circular motion

The figure depicts a change in the position and velocity of a particle during a brief time interval Δt . The distance traveled is

- Define $\Delta \ell = |\vec{r}_2 \vec{r}_1|$, and $\Delta v = |\vec{v}_2 \vec{v}_1|$ $\Delta \ell = v \Delta t$ (rate times time equals distance). $\Delta \vec{v} = \vec{a} \Delta t$ (definition of acceleration). $\Delta v = a \Delta t$ (taking the absolute value of both sides). 1.
- 2.
- 3.
- $\frac{\Delta v}{v} = \frac{\Delta \ell}{r}$ (by similar triangles). Substituting (2) and (4) yields:
- $\frac{a\Delta t}{v}=\frac{v\Delta t}{r}$, which leads to $\frac{a}{v}=\frac{v}{r}$, and therefore: $a=\frac{v^2}{r}$

uniform circular motion (here the Latin d was used instead of the Greek △