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Many complex multi-item manufacturing shops have high
levels of work-in-process because of queueing delays at ma-
chines and consequently long manufacturing lead times.
These delays are directly related to lot sizes. Two alternative
approaches applied to modeling a manufacturing cell — simu-
lation and a novel analytical lot-sizing model (Q-LOTS) —
provide very similar results and validate the analytical model.

omplex, multi-item job shops invar-
C iably have high levels of work-in-
process and long manufacturing lead
times because of the queueing delays at
work centers. These problems are well re-
corded (for example, Burbidge [1975]). Es-
timates suggest that typically only 10 to
15 percent of shop time for a job is spent
in actual processing. However, the causes
underlying this phenomenon have not
been well understood until recently. In
particular, Karmarkar [1983a, 1983b]
shows that for closed job shops lot-sizing
policy is a major determinant of the ex-
tent of queueing delays. Yet, most such

job shops fail to take this important con-
sequence into account in establishing lot
sizes.

We describe two independent attempts
to analyze these phenomena: a simulation
model developed by Eastman Kodak’s
Apparatus Division that examined the be-
havior of a particular manufacturing cell
as the lot-size policy for the cell was
changed; and an analytical model [Kar-
markar 1983; Karmarkar et al. 1983, 1984].
These two approaches afforded on one
hand an interesting opportunity to use
the analytical model to confirm the em-
pirically observed results from the simu-
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lation and to reveal the underlying
mechanisms involved. On the other, the
simulation provided the means to validate
the general model (Q-LOTS) with a spe-
cific instance.
Simulation of a Manufacturing Cell

The manufacturing cell in question was
organized to improve the production of a
group of similar parts that had proved to
be troublesome because of long produc-
tion lead times, high in-process invento-
ries, and difficulties in coordinating
assemblies. The 13 parts were grouped
on the basis of similar process character-
istics, and a production cell, separated
from the functionally organized shop,
was created to produce them. The cell
contains 10 major processing work centers
with three other minor preparation and
finishing operations. Because three of the
major centers have more than one ma-
chine, there are, altogether, 15 machines
in the cell. The work centers include a
manual lathe, an NC lathe, and routine
operations (drill, punch), as well as cer-
tain proprietary metal forming processes
which are quite complex. Part flow through
the cell is not uniform and varies across
parts with some recirculation or multiple
visits for certain parts.

The simulation model was motivated by
a need to predict and understand the op-
erating characteristics of the cell. One ma-
jor task was to devise appropriate lot-
sizing policies for the cell; for example, to
investigate whether the number of setups
should be reduced on bottleneck ma-
chines. As it turned out, the reverse was,
in a sense, the better policy.

The simulation was written in GPSS,
which suited the discrete-event nature of
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the problem. Once the capacities at work
centers are fixed, the simulation is driven
by the annual demand for each part and
the lot sizes chosen. Lots are released at
uniform intervals to the cell, and data is
collected about queueing times, total lead
time, the number of setups made, and
work-in-process inventory. While a de-
tailed scientific validation of the simula-
tion against the cell has not been done for
various pragmatic reasons, over a year of
experience with the cell and the simula-
tion through a variety of parametric
changes has convinced its users that the
simulation is an accurate representation
of cell behavior for the purposes at hand.
Results from the Simulation

The simulation was used to study ca-
pacity and design problems as well as lot
sizing. Initially the characteristics of the
cell were studied under the lot-sizing pol-
icies obtained from conventional EOQ
models used by an existing production
control system. Then the lot sizes were
perturbed to examine the consequences.
As a first arbitrary attempt, all lot sizes
were cut in half. Surprisingly, this did not
result in the catastrophic consequences
that EOQ models would have foretold. In-
stead, lead time and work-in-process
(WIP) both showed reductions while pro-
ductivity did not drop. Further across-
the-board cuts worked well up to a point,
but then lead time and WIP deteriorated
abruptly as queues started to appear at
various points in the system.

Without recounting all the details, the
set of possible lot sizes (a 13-dimensional
vector) was searched, guided chiefly by in-
tuition and trial and error. A significant
difficulty in this process was caused by
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the way in which queues would shift to

different machines as lot-size patterns

were altered. Roughly speaking, the
search rules were

(1) Start with fairly large lot sizes,

(2) Reduce all lot sizes until a queue
appears,

(3) Increase lot sizes on those parts
which have a high setup time on the
machine with a queue,

(4) Keep reducing lot sizes on other parts
until a queue appears elsewhere, and
so on.

Experimentation over several weeks led to

substantial improvements, reducing lead

times and work-in-process by a factor of
over 50 percent compared to the initial
results.

The Analytical Approach

The extant literature on lot-sizing meth-
ods by and large does not address the is-
sues of manufacturing lead times and
work-in-process. Yet many practitioners
and firms have intuitively understood that
increasing lot sizes increases production
times. Indeed, this is easily demonstrated
in the context of a deterministic model

[Karmarkar 1983a, 1983b]. Interestingly,

this phenomenon is referred to by Magee

[1956] in a description of a product cy-

cling problem and by Sugimori et al.

[1977] in their discussion of the Toyota

Kanban system. It is also mentioned by

Sasser et al. [1982] in the Granger Trans-

mission case study. What seems to be

less well understood is the countervailing
phenomenon that small lot sizes exacer-

bate the queueing and sequencing delays
that occur in complex shops by increasing
the load on work centers. While this phe-
nomenon is caused by the higher number
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of setups, the usual device of using setup
costs is an ineffectual and incorrect repre-
sentation of actual behavior. This is be-
cause setup costs are based on a view of
capacity as a binding constraint, whereas
in job shops, queues effectively discour-
age high-loading (utilization) levels long
before nominal capacity is reached. In es-
sence, the cost of excessively small lot
sizes is due to the long lead times and
high levels of work-in-process caused by
queues.

There have been many studies which
model manufacturing facilities as
queueing systems [Buzacott 1974, 1980;
Koenigsberg and Mamer 1982; Shanthiku-
mar and Buzacott 1981; Solberg 1977;
Stecke and Solberg 1981; and Suri 1983].
However, most have not included the ef-
fect of lot-sizing policies. One exception is
the paper by Zipkin [1983]. Although ori-
ented towards somewhat different con-
cerns, Zipkin has independently
developed an approach that is mathemati-
cally similar to ours. A paper by Seid-
mann and Schweitzer [1983] also
considers the effect of batch sizes for the
special case of flexible manufacturing
systems.

The impact of batch size on lead times
can be intuitively understood as follows.
Consider a machine or resource at which
batches queue up, waiting to be proc-
essed. For simplicity, the batches are
taken to be alike. Each batch requires a
setup plus some processing time which,
unlike the setup, depends on batch size.
If the rate of arrival of work is held con-
stant and batch size is increased, the time
that a batch spends on the machine in-
creases linearly; hence the total work that
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arrives at the queue while a batch is
being processed is greater even though
the number of batches in queue may not
change very much. Thus an arriving
batch sees more work waiting ahead of it
and also requires more time for its own
processing. Since the effect of the fixed
setups is diminishing, average queueing
time and total time in system eventually
increase linearly as batch sizes are
increased.

Now consider the impact of reducing
batch size. Work arrives at the machine at
the same rate but because it does so in
smaller batches, the amount of time spent
on setups increases. Thus, although the
real or productive utilization of the ma-
chine remains unchanged, the total work
load (intensity) increases. At some point
this leads to the buildup of large queues
which cause queue times to rise sharply
even though processing time per batch
continues to drop. Clearly, there is a
lower limit on batch sizes at the point
where the total processing time plus
setup time exceeds the time available on
the machine.

In the case where the machine is mod-
eled heuristically as an M/M/1 queue pro-
cessing identical items, it can be shown
(appendix) that the average time T spent
in the system by a batch is given by

(r+Q/P)

T= (1)
1-(D/P)-(Dr/Q)

where D = Total work to be done (units/

time)
P = Processing rate at the ma-
chine (unit/time)
(Q = Batch size

Setup time per batch.

If

T
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Figure 1: Average waiting times (T) as a func-
tion of lot size ().

The batch size Q cannot be smaller
than D+(1-D/P). For large Q, approxi-
mately T = Q/(P-D) where 1/(P-D) is the
average number of batches in the system.
Figure 1 shows a graph of (T) average wait-
ing times versus ().

This queueing model was extended to
the multi-item case [Karmarkar 1983a;
Karmarkar et al. 1983} by modeling the
facility as an M/G/1 queue where an exact
expression is available for the average
time in queue. Next, the case of manufac-
turing systems with many work centers
with several machines at each center was
modeled as an open network of M/G/c
queues [Karmarkar et al. 1984]. The treat-
ment of this case is necessarily heuristic
since no exact analysis exists. At each
stage the queueing model was imbedded
in an optimization mode] that determined
the best lot sizes for a given objective
function. The most general case, which
requires the solution of a nonlinear pro-
gram, has subsequently been coded as a
computer program called Q-LOTS. For
convenience, we use this term tor our
analytical approach.
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Comparison and Validation
In comparing the two approaches, it is
important to remember that

(1) The assumptions underlying the ana-
lytical model are quite different from
those underlying the simulation mech-
anism. In particular, the former as-
sumes randomness in arrivals, while
the simulation uses a uniform rate of
release of work to the cell.

(2) The real cell is a different matter
again — the stochastic queueing
model may be a better representation
of actual behavior since the arrival of
batches to the cell is not uniform.

The first comparison was qualitative.

The behavior observed empirically was

explained by the queueing mechanism. In

turn, by scaling the Iot sizes in the simu-
lation by a constant factor, the character-
istics exhibited in Figure 1 were

Part Lead Lead

Part | Q-LOTS Time |Best Search | Times

Number| Lot Size | (days) | Lot Sizes | (days)

1 168 9.35 270 13.41

2 112 11.01 168 15.31

3 84 8.50 50 9.63

4 158 4.71 94 4.57

5 179 3.98 90 3.70

6 371 8.35 213 8.86

7 152 3.02 187 2.74

8 128 3.64 170 4.46

9 109 13.73 168 19.52

10 102 11.33 168 15.68

11 109 13.11 168 18.59

12 111 1.90 156 2.46

13 203 8.39 144 8.16

Demand

Weighted —— 7.26 — 9.08

Lead Time

Table 1: Comparison of average lead time
(days) and lot sizes (units) by part number as
given by Q-LOTS and the best search results.
The foot of the table gives the demand
weighted average lead times.
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Lot Sizes Lot Sizes From
From Q-LOTS Simulation
Evaluation on 8.57 10.66
Q-LOTS
Evaluation on 7.26 9.08
Simulation

Table 2: Cross-validation results: weighted av-
erage lead times (days) predicted by Q-LOTS
and the simulation for both sets of lot sizes.

corroborated. Next, Q-LOTS was used to
try to determine the best lot sizes for the
cell independent of the results from the
simulation. Since the objective in the sim-
ulation study had been the minimization
of average lead times, this was also used
as the objective for Q-LOTS. More pre-
cisely, the objective function used was the
demand weighted lead time for all the
parts processed by the cell. Since the
work-in-process for a system is given by
production rate x lead time, this was also
equivalent to minimizing the average
number of items in process.

When the lot sizes produced by Q-
LOTS are compared with the best lot
sizes obtained by trial-and-error search on
the simulation, the differences are sub-
stantial (Table 1). For example, Q-LOTS
picks a lot size for part 5 that is twice the
search value; the Q-LOTS choices for
items 9, 10, and 11 are much smaller.
Overall, Q-LOTS does better by almost 20
percent than the best search, largely be-
cause of its better performance on item 1
(a high volume item) and items 8-12.

In addition to running the Q-LOTS out-
put on the simulation, we also tried to
evaluate the search-lot sizes using the an-
alytical model (Table 2). While the predic-
tions of Q-LOTS and the simulation do
not match exactly, they are very close
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Average Lead Time (days) WIP ($)
Scale Factor
a Q-LOTS Simulation | Q-LOTS|Simulation
0.60 49.56 17.05 391,210} 168,140
.80 9.32 7.90 75,290 65,810
1.00 8.57 7.26 68,840 60,400
1.25 9.06 8.24 72,750 | 68,860
1.50 9.91] 9.16 79,680 76,320
1.75 10.89 10.30 87,650 85,440
2.00 11.95 11.47 96,170 95,910

Table 3: Comparison of average lead time
(days) and WIP($) predicted by Q-LOTS and
simulation as the lot-size vector is scaled by a
factor o.

with Q-LOTS showing a 20 percent ad-
vantage in both evaluations.

The results suggest that Q-LOTS found
a slightly better solution than the search.
However, it was possible that a better so-
lution could exist (in the sense of per-
forming better on the simulation). To
thoroughly search the neighborhood of
the Q-LOTS solution on the simulation
would have been too time consuming; we
tried a simpler alternative. We scaled the
lot-size vector Q* produced by Q-LOTS by
a factor o ranging from 0.6 to 2.0 and en-
tered the scaled lot sizes into the simula-
tion and into Q-LOTS. The weighted
average lead times for the cell for each of
these vectors are given in Table 3. They
represent the behavior of the simulation
and the analytical model on a ray passing
through Q*. The table also shows pre-
dicted work-in-process on a cost basis
which is slightly different from the unit
basis mentioned earlier because of differ-
ences in costs across parts. The two
measures for the two approaches are
graphed in Figures 2 and 3.
The following observations were made
from the parametric analysis:
— Q-LOTS corresponds fairly well with

the simulation results at large lot sizes
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Figure 2: Comparison of average lead time
(days) predicted by Q-LOTS and simulation as
optimal lot sizes are scaled.

and more poorly at smaller Jot sizes.
However, the simulation becomes
unstable in the congestion region. For
example, a subsequent simulation run
at a = 0.9 produced an average lead
time of 10.29 days and a WIP level of
$84,210. Thus the behavior predicted
by Q-LOTS at low « is not necessarily
an overestimate.

~— Q-LOTS appears to find the minimum
quite well and generally indicates the
qualitative behavior of the objective
correctly.

Application of the Methods

These methods can be applied in
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Figure 3: Comparison of WIP($) predicted by
Q-LOTS and simulation as optimal lot sizes
are scaled.



LOT SIZING

closed job shops which are multipart,
multimachine manufacturing systems
with repetitive batch production either to
inventory or for assembly. The methods
have potential uses at several levels.

At the scheduling level, the models can
be used to devise optimal lot-size policies
and to predict the performance of a facil-
ity for a given policy. Operationally, these
policies can be used to fix lot sizes for
batches when fixed batch sizes are desira-
ble. Some limited tests at the detailed
scheduling level suggest that even an or-
der-launch approach with these lot sizes
is quite successful. An equally important
use of the models is to predict the lead
times required to produce an order; this
can be done using the expected queueing
time for a batch given its route through
the shop. Knowing these lead times per-
mits the correct release of batches to the
shop.

The implementation of such an ap-
proach would simply employ the lot sizes
and lead times as inputs to a standard
MRP system. The lot sizes should not be
fixed; rather a range of say 0.8 to 1.5
times the lot size could be used as min-
max limits. The advantage of this ap-
proach is that it is a top-down approach
that requires very little administrative
change or modification to existing sys-
tems. In addition, a shop-floor control sys-
tem is not essential. It should be
remembered that the models look at aver-
age characteristics of the shop and that
these will change with the overall produc-
tion mix. Thus, in principle, a detailed
shop-floor system will improve perform-
ance; however, we conjecture that this
improvement is not great especially rela-
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tive to the cost of detailed control. Again,
limited experiments suggest that it is no
greater than 10 percent. A theoretical esti-
mate is given by Kekre [1984].

The models can also be used in capac-
ity and design decisions since they are es-
sentially evaluation tools which predict
performance. The parameters that might
be considered are
— The number and size of machines at

work centers,
— Overtime and shift policies,
— Routing of items (if alternatives are
available),
— The choice of parts to be made in the
cell or facility, and
— The operations or work centers that
should be included in the cell.
In fact, the simulation has been used for
many of these purposes for this cell. The
analytical model has not, but in another
paper [Karmarkar et al. 1984] we describe
an application of Q-LOTS to capacity
analysis in a different manufacturing
system.
Summary

We have described a joint project be-
tween groups in industry and academia
motivated by a common interest in the
solution of certain manufacturing prob-
lems, although possibly with a differing
sense of urgency. Our study provides
strong support for the importance of lot-
sizing techniques in shop performance
and focuses attention on performance is-
sues (lead time, WIP) that have been in-
adequately treated in the technical
literature. Both parties have benefited; the
analytical developments provide an un-
derstanding of the reasons for the ob-
served phenomena as well as a fast
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numerical technique for analyzing such
systems; the simulation provides validat-
ing evidence for the correctness of a com-
plex model.
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APPENDIX

Using the notation in the text, an
expression for the average waiting time in

the system is developed assuming that M/
M/1 model applied for this model,

A = arrival rate = D/Q,

¥ = § = average processing time =
T + (Q/P),

u = (DI/P),

p = N = (DIQ)t + Q/P) = (Dv/Q)

+ (D/P),
T =
The results for the M/M/1 model give
S S . 4022 9
u(1-p)  1-(Dr/Q)-(D/P)

The stability condition p < 1 implies (Dr/
Q) + (D/P) < 1 which on rearrangement
gives Q > Da/(1 — (D/P)), a lower bound
on the lot size. A lower bound for T is
given by

the mean time in system.

T Q

T> +
(1—u) P(l—-u)

which is linear in , and is approached
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asymptotically as Q becomes large.
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