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Chapter 9 Ordinary Differential Equations
dy

dt
= F (t, y) , y (t0) = y0

• Picard’s Theorem: If F (t, y) is continuous near (t0, y0) ,then there exists a solution y = y (t) for

above IV P near t0. This is called local existence theorem. If in addition, Fy (t, y) is also continuous

near (t0, y0) ,then the solution is unique.

• Section 9.1 Separation of Variables

dy

dt
= F (t, y) = f (t) g (y)

General Solution is ∫
1

g (y)
dy =

∫
f (t) d

• Example: y′ = t/y

• Modeling with ODE: y′ = rate of change. apply various laws.

• Problem in page 124: Newton’s law mv′ = −kv2

• Problem in page 125: Newton’s Law of cooling T ′ = −k (T − T0)
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• Section 9.2 Mechanics

– Newton"s method: system internally created force = sum of all external forces exerting on the

system (momentum conservation)

– Hamilton’s Method: Energy conservation

• Example (pendulum) page 127

– Newton’s method: F = ma, F = tangential gravity = −mg sin θ, a = Lθ′′ (arclength = Lθ)

Lθ′′ = −mg sin θ

– Hamilton’s Method:

∗ kinetic energy = mv2/2 = m
(
Lθ′
)2
/2

∗ potential energy =gravity×vertical distance = mgL (1− cos θ)
1

2
m
(
lθ′
)2
+mgL (1− cos θ) = c

– Hamilton’s method = integral of Newton’s method

• Example (Mass-spring) page 128

– Newton’s method: F = ma, F = −kx (Hooks law

mx” = −kx
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– Hamilton’s Method: Kinetic energy = mv2/2, potential energy = work down moving m to position

x against the spring force ∫ x

0

ksds =
k

2
x2

so Hamilton model is

m (x′)2

2
+
k

2
x2 = c

• Section 9.3 Linear ODEs with constant coefficients

y(n) + an−1y
(n−1) + ... + a0y = u (t)

• n = 2: harmonic oscillator

• Linearity: General solution = general solution of homogeneous part + a particular solution

• Differential operator: Set P (t) = tn + an−1t
n−1 + ... + a0

D =
d

dt
, D2 =

d2

dt2
, ...

P (D) y = y(n) + an−1y
(n−1) + ... + a0y



4

P (D)Q (D) y = Q (D)P (D) y

P (D) y = u (t)

P (D) y = u (t)

• General solution of homogeneous equations:

– Polynomial P (t) has total of n real and complex roots including multiplicity. So

P (t) = (t− r1)m1 ... (t− rk)mk

[
(t− α1)2 + β21

]mk+1

...
[
(t− αl)2 + β2l

]mk+l

– For real root rj, general solution for (D − rj)mj y = 0 is

yj =
(
c
(j)
mj−1t

mj−1 + c
(j)
mj−2t

mj−2 + ... + c
(j)
0

)
erjt, j = 1, 2, ..., k

– For each pair of complex root αj ± iβj, general solution for[
(D − αj)2 + β2j

]mk+j

y = 0
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is (for j = k + 1, k + 2, ...k + l)

yj =
(
c
(j)
mj−1t

mj−1 + c
(j)
mj−2t

mj−2 + ... + c
(j)
0

)
eαjt cos βjt

+
(
d
(j)
mj−1t

mj−1 + d
(j)
mj−2t

mj−2 + ... + d
(j)
0

)
eαjt sin βjt

– So general solution for P (D) y = 0 is

y = y1 + y2 + ... + yk + yk+1 + ... + yk+l

– Example: y” + 3y′ + 3y = 0

– Example: P (t) = (t + 1) (t− 2)2
[
(t + 1)2 + 4

]2
. Solve P (D) y = 0

• General solution of non-homogeneous equations:

P (D) y = u (t)

– Superposition: if yh is the general solution of homogeneous equations P (D) y = 0, and if yp is a

particular solution of P (D) yp = u (t) , then y = yh+yp is the general solution of non-homogeneous

equations.

– Particular solution yp may be found by the method of undetermined coefficients. For instance, if

u (t) = tneλt sinωt, then yp = Q (t) eλt (A sinωt +B cosωt) ,where Q (t) is a polynomial of degree

n +m, where m generally depends on whether λ or ωi is root of Q (t)
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• Section 9.4 Systems of ODEs

– nth-order ODE is equivalent to a system of first-order of ODE: y1 = y, y2 = y′, ..., yn = y(n−1)

y′i = yi+1, i = 1, 2, ..., n− 1
y′n = u (t)− (an−1yn + an−2yn−1 + ... + a0y1)

– Matrix form of first-order linear ODE with constant coefficients: y” = Ay, A = [aij] :

y′1 = a11y1 + a12y2 + ... + a1nyn

.., ...

y′n = an1y1 + .an2y2 + ... + annyn

– Example in page 136.

– Solve 2x2 systems:

∗ find all eigenvalues det (A− λI) = 0.
∗ for real eigenvalues λ,find eigenvector ~υ. Then eλt~υ is a solution (sink, source, saddle)

∗ for repeated eigenvalue λ, find eigenvector ~υ, and the second eigenvector ~u : (A− λI) ~u = ~v.

Then eλt~υ and teλt~u are two solutions

∗ for complex eigenvalue λ = α + βi, find complex eigenvector ~v = ~u1 + i~u2. The real part and

complex part of eλt~v are two solutions (spiral sink, source, center)

– For n×n system: same except for the case when λ is a repeated eigenvalue of multiplicitym.Then
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we need to find kth eigenvector ukby solving

(A− λI)k uk = uk−1, k = 1, ...,m, u0 is an eigenvector

• Method of Exponential of matrix:

– Recall the Taylor series expansion

ex =

∞∑
k=0

xk

k!

– it is convergent for all x.

– for diagonal matrix A = diag (λ1, ..., λn)

Ak = diag
(
λk1, ..., λ

k
n

)
– So as N →∞

N∑
k=0

Ak

k!
= diag

(
N∑
k=0

λk1
k!
, ...,

N∑
k=0

λkn
k!

)
→ diag

(
eλ1, ..., eλn

)
= eA

• Definition of eA for general matrix

exp (A) = eA =

∞∑
k=0

Ak

k!
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• Example . Find eA if

A =

(
λ 1

0 λ

)
Sol:

eAt =

(
eλt teλt

0 eλt

)
• Homework . Find eA if

A =

(
λ 1

0 µ

)
? (Exercise 1)

• Properties of exponential of matrices:

(a) If B = T−1AT, then eB = T−1eAT

(b) If AB = BA, then exp (A +B) = eAeB

(c) exp (−A) = (exp (A))−1

(d) If λ is an eigenvalue of A and V is an associated eigenvector, then eλ is an eigenvalue of eAand

V is an eigenvector of eA associated with eλ

(e)
(
etA
)′
= AetA = etAA
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• Theorem: Solution of

y′ = Ay + u (t) , y (0) = y0

is

y = etA
(
y0 +

∫ t

0

e−Asu (s) ds

)
In particular, etAy0 is the solution of homogeneous system y′ = Ay

• Frequency-Domain Methods (Chapter 10 )

• Laplace Transform of a function

F (s) = L (f ) (s) =

∫ ∞
0

f (t) e−tsdt

– L (eat) =
1

s− a
– L (sin at) =

a

s2 + a2

– L (cos at) =
s

s2 + a2

• Property: L (y′) = sL (y)− y (0)
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• Solving system: y = [y1 y2 ...yn]
T

be a vector function, Anxn be a matrix

y′ = Ay

Applying Laplace transform, write Y = L (y) . then

sY (s)− Y (0) = AY

Y (s) = (sI − A)−1 Y (0)

where R (s) = (sI − A)−1 is called resolvent. According to Cramer’s rule,

R (s)Y (0) =
1

det(sI − A)adj (sI − A) =
∑ 1

(s− βi)
j~uij

Therefore,

y =
∑

L−1
(

1

(s− βi)
j

)
~uij

• Example in page 152

• Serier solutions: Consider

y” + p (t) y′ + q (t) y = f (t) , y (0) = y0, y
′ (0) = y1
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Assume that p (t) , q (t) , f (t) are all analytic functions, i.e., they all have Taylor series representations

p (t) =

∞∑
k=0

pkt
k, q (t) =

∞∑
k=0

qkt
k, f (t) =

∞∑
k=0

fkt
k

Look for solution in series form

y (t) =

∞∑
k=0

ykt
k

Now

y′ =

∞∑
k=0

kykt
k−1 =

∞∑
k=0

(k + 1) yk+1t
k

y” =
∞∑
k=0

k (k − 1) yktk−2 =
∞∑
k=0

(k + 2) (k + 1) yk+2t
k
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Substitute all these serieses into ODE

∞∑
k=0

(k + 2) (k + 1) yk+2t
k +

( ∞∑
k=0

pkt
k

) ∞∑
k=0

(k + 1) yk+1t
k

+

( ∞∑
k=0

qkt
k

) ∞∑
k=0

ykt
k =

∞∑
k=0

fkt
k

Note that ( ∞∑
k=0

akt
k

)( ∞∑
k=0

bkt
k

)
=

( ∞∑
k=0

ckt
k

)

ck =

k∑
j=0

ak−jbj
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So ( ∞∑
k=0

pkt
k

) ∞∑
k=0

(k + 1) yk+1t
k =

∞∑
k=0

 k∑
j=0

pk−j (j + 1) yj

 tk

( ∞∑
k=0

qkt
k

) ∞∑
k=0

ykt
k =

∞∑
k=0

 k∑
j=0

qk−jyj

 tk.

The coefficient of tk in the left-hand side of the equation is equal to that of the RHS:

(k + 2) (k + 1) yk+2 +

k∑
j=0

pk−j (j + 1) yj +

k∑
j=0

qk−jyj = fk

or

yk+2 =
1

(k + 2) (k + 1)

fk − k∑
j=0

pk−j (j + 1) yj −
k∑
j=0

qk−jyj

 ,
k = 0, 1, ...

• Homework (in this note): Exercise 1

• Homework (in textbook): 9.10, 9.15, 9.40, 9.41 (using Exercise 1). 9.42


