Chapter 9 Ordinary Differential Equations

$$
\frac{d y}{d t}=F(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

- Picard's Theorem: If $F(t, y)$ is continuous near $\left(t_{0}, y_{0}\right)$,then there exists a solution $y=y(t)$ for above $I V P$ near t_{0}. This is called local existence theorem. If in addition, $F_{y}(t, y)$ is also continuous near $\left(t_{0}, y_{0}\right)$,then the solution is unique.
- Section 9.1 Separation of Variables

$$
\frac{d y}{d t}=F(t, y)=f(t) g(y)
$$

General Solution is

$$
\int \frac{1}{g(y)} d y=\int f(t) d
$$

- Example: $y^{\prime}=t / y$
- Modeling with ODE: $y^{\prime}=$ rate of change. apply various laws.
- Problem in page 124: Newton's law $m v^{\prime}=-k v^{2}$
- Problem in page 125: Newton's Law of cooling $T^{\prime}=-k\left(T-T_{0}\right)$
- Section 9.2 Mechanics
- Newton"s method: system internally created force = sum of all external forces exerting on the system (momentum conservation)
- Hamilton's Method: Energy conservation
- Example (pendulum) page 127
- Newton's method: $F=m a, \quad F=$ tangential gravity $=-m g \sin \theta, a=L \theta^{\prime \prime}($ arclength $=L \theta)$

$$
L \theta^{\prime \prime}=-m g \sin \theta
$$

- Hamilton's Method:
* kinetic energy $=m v^{2} / 2=m\left(L \theta^{\prime}\right)^{2} / 2$
$*$ potential energy $=$ gravity \times vertical distance $=m g L(1-\cos \theta)$

$$
\frac{1}{2} m\left(l \theta^{\prime}\right)^{2}+m g L(1-\cos \theta)=c
$$

- Hamilton's method = integral of Newton's method
- Example (Mass-spring) page 128
- Newton's method: $F=m a, \quad F=-k x$ (Hooks law

$$
m x "=-k x
$$

- Hamilton's Method: Kinetic energy $=m v^{2} / 2$, potential energy = work down moving m to position x against the spring force

$$
\int_{0}^{x} k s d s=\frac{k}{2} x^{2}
$$

so Hamilton model is

$$
\frac{m\left(x^{\prime}\right)^{2}}{2}+\frac{k}{2} x^{2}=c
$$

- Section 9.3 Linear ODEs with constant coefficients

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y=u(t)
$$

- $n=2$: harmonic oscillator
- Linearity: General solution = general solution of homogeneous part + a particular solution
- Differential operator: Set $P(t)=t^{n}+a_{n-1} t^{n-1}+\ldots+a_{0}$

$$
\begin{gathered}
D=\frac{d}{d t}, \quad D^{2}=\frac{d^{2}}{d t^{2}}, \ldots \\
P(D) y=y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{0} y
\end{gathered}
$$

$$
\begin{gathered}
P(D) Q(D) y=Q(D) P(D) y \\
P(D) y=u(t) \\
P(D) y=u(t)
\end{gathered}
$$

- General solution of homogeneous equations:
- Polynomial $P(t)$ has total of n real and complex roots including multiplicity. So

$$
P(t)=\left(t-r_{1}\right)^{m_{1}} \ldots\left(t-r_{k}\right)^{m_{k}}\left[\left(t-\alpha_{1}\right)^{2}+\beta_{1}^{2}\right]^{m_{k+1}} \ldots\left[\left(t-\alpha_{l}\right)^{2}+\beta_{l}^{2}\right]^{m_{k+l}}
$$

- For real root r_{j}, general solution for $\left(D-r_{j}\right)^{m_{j}} y=0$ is

$$
y_{j}=\left(c_{m_{j}-1}^{(j)} t^{m_{j}-1}+c_{m_{j}-2}^{(j)} t^{m_{j}-2}+\ldots+c_{0}^{(j)}\right) e^{r_{j} t}, \quad j=1,2, \ldots, k
$$

- For each pair of complex root $\alpha_{j} \pm i \beta_{j}$, general solution for

$$
\left[\left(D-\alpha_{j}\right)^{2}+\beta_{j}^{2}\right]^{m_{k+j}} y=0
$$

is $($ for $j=k+1, k+2, \ldots k+l)$

$$
\begin{aligned}
y_{j} & =\left(c_{m_{j}-1}^{(j)} t^{m_{j}-1}+c_{m_{j}-2}^{(j)} t^{m_{j}-2}+\ldots+c_{0}^{(j)}\right) e^{\alpha_{j} t} \cos \beta_{j} t \\
& +\left(d_{m_{j}-1}^{(j)} t^{m_{j}-1}+d_{m_{j}-2}^{(j)} t^{m_{j}-2}+\ldots+d_{0}^{(j)}\right) e^{\alpha_{j} t} \sin \beta_{j} t
\end{aligned}
$$

- So general solution for $P(D) y=0$ is

$$
y=y_{1}+y_{2}+\ldots+y_{k}+y_{k+1}+\ldots+y_{k+l}
$$

- Example: $y^{\prime \prime}+3 y^{\prime}+3 y=0$
- Example: $P(t)=(t+1)(t-2)^{2}\left[(t+1)^{2}+4\right]^{2}$. Solve $P(D) y=0$
- General solution of non-homogeneous equations:

$$
P(D) y=u(t)
$$

- Superposition: if y_{h} is the general solution of homogeneous equations $P(D) y=0$, and if y_{p} is a particular solution of $P(D) y_{p}=u(t)$, then $y=y_{h}+y_{p}$ is the general solution of non-homogeneous equations.
- Particular solution y_{p} may be found by the method of undetermined coefficients. For instance, if $u(t)=t^{n} e^{\lambda t} \sin \omega t$, then $y_{p}=Q(t) e^{\lambda t}(A \sin \omega t+B \cos \omega t)$, where $Q(t)$ is a polynomial of degree $n+m$, where m generally depends on whether λ or ωi is root of $Q(t)$
- Section 9.4 Systems of ODEs
- n th-order ODE is equivalent to a system of first-order of ODE: $y_{1}=y, y_{2}=y^{\prime}, \ldots, y_{n}=y^{(n-1)}$

$$
\begin{aligned}
y_{i}^{\prime} & =y_{i+1}, \quad i=1,2, \ldots, n-1 \\
y_{n}^{\prime} & =u(t)-\left(a_{n-1} y_{n}+a_{n-2} y_{n-1}+\ldots+a_{0} y_{1}\right)
\end{aligned}
$$

- Matrix form of first-order linear ODE with constant coefficients: $y^{\prime \prime}=A y, A=\left[a_{i j}\right]$:

$$
\begin{aligned}
& y_{1}^{\prime}=a_{11} y_{1}+a_{12} y_{2}+\ldots+a_{1 n} y_{n} \\
& \quad . ., \ldots \\
& y_{n}^{\prime}=a_{n 1} y_{1}+. a_{n 2} y_{2}+\ldots+a_{n n} y_{n}
\end{aligned}
$$

- Example in page 136.
- Solve $2 x 2$ systems:
* find all eigenvalues $\operatorname{det}(A-\lambda I)=0$.
* for real eigenvalues λ, find eigenvector \vec{v}. Then $e^{\lambda t} \vec{v}$ is a solution (sink, source, saddle)
* for repeated eigenvalue λ, find eigenvector \vec{v}, and the second eigenvector $\vec{u}:(A-\lambda I) \vec{u}=\vec{v}$. Then $e^{\lambda t} \vec{v}$ and $t e^{\lambda t} \vec{u}$ are two solutions
* for complex eigenvalue $\lambda=\alpha+\beta i$, find complex eigenvector $\vec{v}=\vec{u}_{1}+i \vec{u}_{2}$. The real part and complex part of $e^{\lambda t} \vec{v}$ are two solutions (spiral sink, source, center)
- For $n \times n$ system: same except for the case when λ is a repeated eigenvalue of multiplicity m. Then
we need to find k th eigenvector u_{k} by solving

$$
(A-\lambda I)^{k} u_{k}=u_{k-1}, \quad k=1, \ldots, m, u_{0} \text { is an eigenvector }
$$

- Method of Exponential of matrix:
- Recall the Taylor series expansion

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}
$$

- it is convergent for all x.
- for diagonal matrix $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$

$$
A^{k}=\operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)
$$

- So as $N \rightarrow \infty$

$$
\sum_{k=0}^{N} \frac{A^{k}}{k!}=\operatorname{diag}\left(\sum_{k=0}^{N} \frac{\lambda_{1}^{k}}{k!}, \ldots, \sum_{k=0}^{N} \frac{\lambda_{n}^{k}}{k!}\right) \rightarrow \operatorname{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right)=e^{A}
$$

- Definition of e^{A} for general matrix

$$
\exp (A)=e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

- Example . Find e^{A} if

$$
A=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Sol:

$$
e^{A t}=\left(\begin{array}{cc}
e^{\lambda t} & t e^{\lambda t} \\
0 & e^{\lambda t}
\end{array}\right)
$$

- Homework. Find e^{A} if

$$
A=\left(\begin{array}{ll}
\lambda & 1 \tag{Exercise1}\\
0 & \mu
\end{array}\right) ?
$$

- Properties of exponential of matrices:
(a) If $B=T^{-1} A T$, then $e^{B}=T^{-1} e^{A} T$
(b) If $A B=B A$, then $\exp (A+B)=e^{A} e^{B}$
(c) $\exp (-A)=(\exp (A))^{-1}$
(d) If λ is an eigenvalue of A and V is an associated eigenvector, then e^{λ} is an eigenvalue of e^{A} and V is an eigenvector of e^{A} associated with e^{λ}
(e) $\left(e^{t A}\right)^{\prime}=A e^{t A}=e^{t A} A$
- Theorem: Solution of

$$
y^{\prime}=A y+u(t), \quad y(0)=y_{0}
$$

is

$$
y=e^{t A}\left(y_{0}+\int_{0}^{t} e^{-A s} u(s) d s\right)
$$

In particular, $e^{t A} y_{0}$ is the solution of homogeneous system $y^{\prime}=A y$

- Frequency-Domain Methods (Chapter 10)
- Laplace Transform of a function

$$
F(s)=L(f)(s)=\int_{0}^{\infty} f(t) e^{-t s} d t
$$

$-L\left(e^{a t}\right)=\frac{1}{s-a}$
$-L(\sin a t)=\frac{a}{s^{2}+a^{2}}$
$-L(\cos a t)=\frac{s}{s^{2}+a^{2}}$

- Property: $L\left(y^{\prime}\right)=s L(y)-y(0)$
- Solving system: $y=\left[\begin{array}{lll}y_{1} & y_{2} & \ldots\end{array} y_{n}\right]^{T}$ be a vector function, $A_{n x n}$ be a matrix

$$
y^{\prime}=A y
$$

Applying Laplace transform, write $Y=L(y)$. then

$$
\begin{aligned}
s Y(s)-Y(0) & =A Y \\
Y(s) & =(s I-A)^{-1} Y(0)
\end{aligned}
$$

where $R(s)=(s I-A)^{-1}$ is called resolvent. According to Cramer's rule,

$$
R(s) Y(0)=\frac{1}{\operatorname{det}(s I-A)} \operatorname{adj}(s I-A)=\sum \frac{1}{\left(s-\beta_{i}\right)^{j}} \vec{u}_{i j}
$$

Therefore,

$$
y=\sum L^{-1}\left(\frac{1}{\left(s-\beta_{i}\right)^{j}}\right) \vec{u}_{i j}
$$

- Example in page 152
- Serier solutions: Consider

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t), y(0)=y_{0}, y^{\prime}(0)=y_{1}
$$

Assume that $p(t), q(t), f(t)$ are all analytic functions, i.e., they all have Taylor series representations

$$
p(t)=\sum_{k=0}^{\infty} p_{k} t^{k}, q(t)=\sum_{k=0}^{\infty} q_{k} t^{k}, f(t)=\sum_{k=0}^{\infty} f_{k} t^{k}
$$

Look for solution in series form

$$
y(t)=\sum_{k=0}^{\infty} y_{k} k^{k}
$$

Now

$$
\begin{aligned}
y^{\prime} & =\sum_{k=0}^{\infty} k y_{k} t^{k-1}=\sum_{k=0}^{\infty}(k+1) y_{k+1} t^{k} \\
y^{\prime \prime} & =\sum_{k=0}^{\infty} k(k-1) y_{k} t^{k-2}=\sum_{k=0}^{\infty}(k+2)(k+1) y_{k+2} t^{k}
\end{aligned}
$$

Substitute all these serieses into ODE

$$
\begin{aligned}
& \sum_{k=0}^{\infty}(k+2)(k+1) y_{k+2} t^{k}+\left(\sum_{k=0}^{\infty} p_{k} t^{k}\right) \sum_{k=0}^{\infty}(k+1) y_{k+1} t^{k} \\
& +\left(\sum_{k=0}^{\infty} q_{k} t^{k}\right) \sum_{k=0}^{\infty} y_{k} t^{k}=\sum_{k=0}^{\infty} f_{k} t^{k}
\end{aligned}
$$

Note that

$$
\begin{gathered}
\left(\sum_{k=0}^{\infty} a_{k} t^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} t^{k}\right)=\left(\sum_{k=0}^{\infty} c_{k} t^{k}\right) \\
c_{k}=\sum_{j=0}^{k} a_{k-j} b_{j}
\end{gathered}
$$

So

$$
\begin{aligned}
\left(\sum_{k=0}^{\infty} p_{k} t^{k}\right) \sum_{k=0}^{\infty}(k+1) y_{k+1} t^{k} & =\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} p_{k-j}(j+1) y_{j}\right) t^{k} \\
\left(\sum_{k=0}^{\infty} q_{k} t^{k}\right) \sum_{k=0}^{\infty} y_{k} t^{k} & =\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} q_{k-j} y_{j}\right) t^{k} .
\end{aligned}
$$

The coefficient of t^{k} in the left-hand side of the equation is equal to that of the RHS:

$$
(k+2)(k+1) y_{k+2}+\sum_{j=0}^{k} p_{k-j}(j+1) y_{j}+\sum_{j=0}^{k} q_{k-j} y_{j}=f_{k}
$$

or

$$
\begin{aligned}
y_{k+2} & =\frac{1}{(k+2)(k+1)}\left[f_{k}-\sum_{j=0}^{k} p_{k-j}(j+1) y_{j}-\sum_{j=0}^{k} q_{k-j} y_{j}\right] \\
k & =0,1, \ldots
\end{aligned}
$$

- Homework (in this note): Exercise 1
- Homework (in textbook): 9.10, 9.15, 9.40, 9.41 (using Exercise 1). 9.42

